Displaying similar documents to “On the fixed-point set of an automorphism of a closed nonorientable surface”

A family of M-surfaces whose automorphism groups act transitively on the mirrors.

Adnan Melekoglu (2000)

Revista Matemática Complutense

Similarity:

Let X be a compact Riemmann surface of genus g > 1. A symmetry T of X is an anticonformal involution. The fixed point set of T is a disjoint union of simple closed curves, each of which is called a mirror of T. If T fixes g +1 mirrors then it is called an M-symmetry and X is called an M-surface. If X admits an automorphism of order g + 1 which cyclically permutes the mirrors of T then we shall call X an M-surface with the M-property. In this paper we investigate those M-surfaces...

On ovals on Riemann surfaces.

Grzegorz Gromadzki (2000)

Revista Matemática Iberoamericana

Similarity:

We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.

The full automorphism group of the Kulkarni surface.

Peter Turbek (1997)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

The full automorphism group of the Kulkarni surface is explicitly determined. It is employed to give three defining equations of the Kulkarni surface; each equation exhibits a symmetry of the surface as complex conjugation.

Big groups of automorphisms of some Klein surfaces.

Beata Mockiewicz (2002)

RACSAM

Similarity:

Sea X una superficie de Klein compacta con borde de gen algebraico p ≥ 2. Se sabe que si G es un grupo de automorfismos de X entonces |G| ≤ 12(p- 1). Se dice que G es un grupo grande de gen p si |G| > 4(p -1). En el presente artículo se halla una familia de enteros p para los que el único grupo grande de gen p son los grupos diédricos. Esto significa que, en términos del gen real introducido por C. L. May, para tales valores de p no existen grupos grandes de gen real p. ...