The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds.”

Compact embeddings of Brézis-Wainger type.

Fernando Cobos, Thomas Kühn, Tomas Schonbek (2006)

Revista Matemática Iberoamericana

Similarity:

Let Ω be a bounded domain in R and denote by id the restriction operator from the Besov space B (R) into the generalized Lipschitz space Lip(Ω). We study the sequence of entropy numbers of this operator and prove that, up to logarithmic factors, it behaves asymptotically like e(id) ~ k if α > max (1 + 2/p + 1/q, 1/p). Our estimates improve previous results by Edmunds and Haroske.

Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates.

José A. Carrillo, Robert J. McCann, Cédric Villani (2003)

Revista Matemática Iberoamericana

Similarity:

The long-time asymptotics of certain nonlinear , nonlocal, diffusive equations with a gradient flow structure are analyzed. In particular, a result of Benedetto, Caglioti, Carrillo and Pulvirenti [4] guaranteeing eventual relaxation to equilibrium velocities in a spatially homogencous model of granular flow is extended and quantified by computing explicit relaxation rates. Our arguments rely on establishing generalizations of logarithmic Sobolev inequalities and mass transportation inequalities,...