Displaying similar documents to “Location of the 2-centers of three points.”

Orthogonality in normed linear spaces: a classification of the different concepts and some open problems.

Carlos Benítez Rodríguez (1989)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

Orthogonality in inner products is a binary relation that can be expressed in many ways without explicit mention to the inner product of the space. Great part of such definitions have also sense in normed linear spaces. This simple observation is at the base of many concepts of orthogonality in these more general structures. Various authors introduced such concepts over the last fifty years, although the origins of some of the most interesting results that can be obtained for these generalized...

A universal modulus for normed spaces

Carlos Benítez, Krzysztof Przesławski, David Yost (1998)

Studia Mathematica

Similarity:

We define a handy new modulus for normed spaces. More precisely, given any normed space X, we define in a canonical way a function ξ:[0,1)→ ℝ which depends only on the two-dimensional subspaces of X. We show that this function is strictly increasing and convex, and that its behaviour is intimately connected with the geometry of X. In particular, ξ tells us whether or not X is uniformly smooth, uniformly convex, uniformly non-square or an inner product space.

On the lambda-property and computation of the lambda-function of some normed spaces.

Mohamed Akkouchi, Hassan Sadiky (1993)

Extracta Mathematicae

Similarity:

R. M. Aron and R. H. Lohman introduced, in [1], the notion of lambda-property in a normed space and calculated the lambda-function for some classical normed spaces. In this paper we give some more general remarks on this lambda-property and compute the lambda-function of other normed spaces, namely: B(S,∑,X) and M(E).

On (a,b,c,d)-orthogonality in normed linear spaces

C.-S. Lin (2005)

Colloquium Mathematicae

Similarity:

We first introduce a notion of (a,b,c,d)-orthogonality in a normed linear space, which is a natural generalization of the classical isosceles and Pythagorean orthogonalities, and well known α- and (α,β)-orthogonalities. Then we characterize inner product spaces in several ways, among others, in terms of one orthogonality implying another orthogonality.

On minimal points

Gliceria Godini (1980)

Commentationes Mathematicae Universitatis Carolinae

Similarity: