A universal modulus for normed spaces
Carlos Benítez; Krzysztof Przesławski; David Yost
Studia Mathematica (1998)
- Volume: 127, Issue: 1, page 21-46
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBenítez, Carlos, Przesławski, Krzysztof, and Yost, David. "A universal modulus for normed spaces." Studia Mathematica 127.1 (1998): 21-46. <http://eudml.org/doc/216458>.
@article{Benítez1998,
abstract = {We define a handy new modulus for normed spaces. More precisely, given any normed space X, we define in a canonical way a function ξ:[0,1)→ ℝ which depends only on the two-dimensional subspaces of X. We show that this function is strictly increasing and convex, and that its behaviour is intimately connected with the geometry of X. In particular, ξ tells us whether or not X is uniformly smooth, uniformly convex, uniformly non-square or an inner product space.},
author = {Benítez, Carlos, Przesławski, Krzysztof, Yost, David},
journal = {Studia Mathematica},
keywords = {universal modulus; strictly increasing and convex; geometry; uniformly smooth; uniformly convex; uniformly non-square; inner product space},
language = {eng},
number = {1},
pages = {21-46},
title = {A universal modulus for normed spaces},
url = {http://eudml.org/doc/216458},
volume = {127},
year = {1998},
}
TY - JOUR
AU - Benítez, Carlos
AU - Przesławski, Krzysztof
AU - Yost, David
TI - A universal modulus for normed spaces
JO - Studia Mathematica
PY - 1998
VL - 127
IS - 1
SP - 21
EP - 46
AB - We define a handy new modulus for normed spaces. More precisely, given any normed space X, we define in a canonical way a function ξ:[0,1)→ ℝ which depends only on the two-dimensional subspaces of X. We show that this function is strictly increasing and convex, and that its behaviour is intimately connected with the geometry of X. In particular, ξ tells us whether or not X is uniformly smooth, uniformly convex, uniformly non-square or an inner product space.
LA - eng
KW - universal modulus; strictly increasing and convex; geometry; uniformly smooth; uniformly convex; uniformly non-square; inner product space
UR - http://eudml.org/doc/216458
ER -
References
top- [1] J. Alonso and C. Benítez, Some characteristic and non-characteristic properties of inner product spaces, J. Approx. Theory 55 (1988), 318-323. Zbl0675.41047
- [2] J. Alonso and A. Ullán, Moduli in normed linear spaces and characterization of inner product spaces, Arch. Math. (Basel) 59 (1992), 487-495. Zbl0760.46014
- [3] D. Amir, Characterizations of Inner Product Spaces, Birkhäuser, Basel, 1986. Zbl0617.46030
- [4] C. Benítez and M. del Río, Characterization of inner product spaces through rectangle and square inequalities, Rev. Roumaine Math. Pures Appl. 29 (1984), 543-546. Zbl0556.46013
- [5] C. Benítez and Y. Sarantopoulos, Characterization of real inner product spaces by means of symmetric bilinear forms, J. Math. Anal. Appl. 180 (1993), 207-220. Zbl0791.46015
- [6] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), 169-172. Zbl0012.30604
- [7] F. Cabello Sánchez and J. M. F. Castillo, Isometries of finite dimensional normed spaces, Extracta Math. 10 (1995), 146-151.
- [8] M. M. Day, Polygons circumscribed about closed convex curves, Trans. Amer. Math. Soc. 62 (1947), 315-319. Zbl0034.25301
- [9] M. M. Day, Some characterizations of inner-product spaces, ibid., 320-337. Zbl0034.21703
- [10] M. del Río and C. Benítez, The rectangular constant for two-dimensional normed spaces, J. Approx. Theory 19 (1977), 15-21. Zbl0343.46018
- [11] J. Gao and K. S. Lau, On two classes of Banach spaces with uniform normal structure, Studia Math. 99 (1991), 41-56. Zbl0757.46023
- [12] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990. Zbl0708.47031
- [13] V. I. Gurariĭ, On differential properties of the modulus of convexity of Banach spaces, Mat. Issled. 2 (1967), 141-148 (in Russian).
- [14] R. E. Harrell and L. A. Karlovitz, Girths and flat Banach spaces, Bull. Amer. Math. Soc. 76 (1970) 1288-1291. Zbl0212.14303
- [15] J.-B. Hiriart-Urruty, A short proof of the variational principle for approximate solutions of a minimization problem, Amer. Math. Monthly 90 (1983), 206-207.
- [16] R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292.
- [17] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 540-550. Zbl0132.08902
- [18] J. Joly, Caractérisations d'espaces hilbertiens au moyen de la constante rectangle, J. Approx. Theory 2 (1969), 301-311. Zbl0177.40701
- [19] M. I. Kadets, Proof of the topological equivalence of all separable infinite-dimensional Banach spaces, Functional Anal. Appl. 1 (1967), 53-62 (= Funktsional. Anal. i Prilozhen. 1 (1967), 61-70).
- [20] M. A. Khamsi, Étude de la propriété du point fixe dans les espaces de Banach et les espaces métriques, thesis, Univ. Paris VI, 1987.
- [21] V. I. Liokumovich, Existence of B-spaces with a non-convex modulus of convexity, Izv. Vyssh. Uchebn. Zaved. Mat. 12 (1973), 43-49 (in Russian). Zbl0274.46014
- [22] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Math. 1200, Springer, Berlin, 1986. Zbl0606.46013
- [23] S. Prus, A remark on a theorem of Turett, Bull. Polish Acad. Sci. Math. 36 (1988), 225-227. Zbl0767.46009
- [24] K. Przesławski and D. Yost, Lipschitz retracts, selectors and extensions, Michigan Math. J. 42 (1995), 555-571. Zbl0920.54019
- [25] S. Rolewicz, On drop property, Studia Math. 85 (1986), 27-35. Zbl0642.46011
- [26] J. J. Schäffer, Inner diameter, perimeter, and girth of spheres, Math. Ann. 173 (1967), 59-79 and 79-82. Zbl0152.12405
- [27] B. Sims, unpublished seminar notes, Kent State Univ., Kent, Ohio, 1986.
- [28] C. Zanco and A. Zucchi, Moduli of rotundity and smoothness for convex bodies, Boll. Un. Mat. Ital. B (7) 7 (1993), 833-855. Zbl0804.52001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.