Displaying similar documents to “On some geometric properties concerning closed convex sets.”

The space Weak H¹

Robert Fefferman, Fernando Soria (1987)

Studia Mathematica

Similarity:

On the second order derivatives of convex functions on the Heisenberg group

Cristian E. Gutiérrez, Annamaria Montanari (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In the euclidean setting the celebrated Aleksandrov-Busemann-Feller theorem states that convex functions are a.e. twice differentiable. In this paper we prove that a similar result holds in the Heisenberg group, by showing that every continuous –convex function belongs to the class of functions whose second order horizontal distributional derivatives are Radon measures. Together with a recent result by Ambrosio and Magnani, this proves the existence a.e. of second order horizontal derivatives...

On a dual locally uniformly rotund norm on a dual Vašák space

Marián Fabian (1991)

Studia Mathematica

Similarity:

We transfer a renorming method of transfer, due to G. Godefroy, from weakly compactly generated Banach spaces to Vašák, i.e., weakly K-countably determined Banach spaces. Thus we obtain a new construction of a locally uniformly rotund norm on a Vašák space. A further cultivation of this method yields the new result that every dual Vašák space admits a dual locally uniformly rotund norm.

A Clarke–Ledyaev Type Inequality for Certain Non–Convex Sets

Ivanov, M., Zlateva, N. (2000)

Serdica Mathematical Journal

Similarity:

We consider the question whether the assumption of convexity of the set involved in Clarke-Ledyaev inequality can be relaxed. In the case when the point is outside the convex hull of the set we show that Clarke-Ledyaev type inequality holds if and only if there is certain geometrical relation between the point and the set.

The Space of Differences of Convex Functions on [0, 1]

Zippin, M. (2000)

Serdica Mathematical Journal

Similarity:

∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University, College Station, Texas, 2000. Research partially supported by the Edmund Landau Center for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation (Germany). The space K[0, 1] of differences of convex functions on the closed interval [0, 1] is investigated as a dual Banach space. It is proved that a continuous function f on [0, 1] belongs to K[0, 1] ...