Displaying similar documents to “Integral representation of functions on sectors, functional calculus and norm estimates.”

Non-holomorphic functional calculus for commuting operators with real spectrum

Mats Andersson, Bo Berndtsson (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We consider n -tuples of commuting operators a = a 1 , ... , a n on a Banach space with real spectra. The holomorphic functional calculus for a is extended to algebras of ultra-differentiable functions on n , depending on the growth of exp ( i a · t ) , t n , when | t | . In the non-quasi-analytic case we use the usual Fourier transform, whereas for the quasi-analytic case we introduce a variant of the FBI transform, adapted to ultradifferentiable classes.

(Ultra)differentiable functional calculus and current extension of the resolvent mapping

Mats Andersson (2003)

Annales de l’institut Fourier

Similarity:

Let a = ( a 1 , ... , a n ) be a tuple of commuting operators on a Banach space X . We discuss various conditions equivalent to that the holomorphic (Taylor) functional calculus has an extension to the real-analytic functions or various ultradifferentiable classes. In particular, we discuss the possible existence of a functional calculus for smooth functions. We relate the existence of a possible extension to existence of a certain (ultra)current extension of the resolvent mapping over the (Taylor) spectrum...