Non-holomorphic functional calculus for commuting operators with real spectrum
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)
- Volume: 1, Issue: 4, page 925-955
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topAndersson, Mats, and Berndtsson, Bo. "Non-holomorphic functional calculus for commuting operators with real spectrum." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.4 (2002): 925-955. <http://eudml.org/doc/84492>.
@article{Andersson2002,
abstract = {We consider $n$-tuples of commuting operators $a=a_1,\ldots ,a_n$ on a Banach space with real spectra. The holomorphic functional calculus for $a$ is extended to algebras of ultra-differentiable functions on $\mathbb \{R\}^n$, depending on the growth of $\Vert \exp (ia\cdot t)\Vert $, $t\in \mathbb \{R\}^n$, when $|t|\rightarrow \infty $. In the non-quasi-analytic case we use the usual Fourier transform, whereas for the quasi-analytic case we introduce a variant of the FBI transform, adapted to ultradifferentiable classes.},
author = {Andersson, Mats, Berndtsson, Bo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {functional calculus; joint spectrum; algebras of ultra-differentiable functions; Fourier transform; FBI transform},
language = {eng},
number = {4},
pages = {925-955},
publisher = {Scuola normale superiore},
title = {Non-holomorphic functional calculus for commuting operators with real spectrum},
url = {http://eudml.org/doc/84492},
volume = {1},
year = {2002},
}
TY - JOUR
AU - Andersson, Mats
AU - Berndtsson, Bo
TI - Non-holomorphic functional calculus for commuting operators with real spectrum
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 4
SP - 925
EP - 955
AB - We consider $n$-tuples of commuting operators $a=a_1,\ldots ,a_n$ on a Banach space with real spectra. The holomorphic functional calculus for $a$ is extended to algebras of ultra-differentiable functions on $\mathbb {R}^n$, depending on the growth of $\Vert \exp (ia\cdot t)\Vert $, $t\in \mathbb {R}^n$, when $|t|\rightarrow \infty $. In the non-quasi-analytic case we use the usual Fourier transform, whereas for the quasi-analytic case we introduce a variant of the FBI transform, adapted to ultradifferentiable classes.
LA - eng
KW - functional calculus; joint spectrum; algebras of ultra-differentiable functions; Fourier transform; FBI transform
UR - http://eudml.org/doc/84492
ER -
References
top- [1] D. W. Albrecht, Explicit formulae for Taylor’s functional calculus, Multivariable operator theory (Seattle, WA, 1993), 1-5, Contemp. Math. 185, AMS. Providence, RI. 1995. Zbl0842.47009MR1332052
- [2] D. W. Albrecht, Integral formulae for special cases of Taylor’s functional calculus, Studia Math. 105 (1993), 51-68. Zbl0810.47013MR1222188
- [3] M. Andersson, Taylor’s functional calculus with Cauchy-Fantappie-Leray formulas, Int. Math. Res. Not. 6 (1997), 247-258. Zbl1061.47502MR1440302
- [4] M. Andersson, Correction to Taylor’s functional calculus with Cauchy-Fantappie-Leray formulas, Int. Math. Res. Not. 2 (1998), 123-124. Zbl1061.47502MR1604824
- [5] M. Andersson – B. Berndtsson, Almost holomorphic extensions of ultradifferentiable functions, to appear in J. d’Analyse. Zbl1061.30028MR1981924
- [6] A. Beurling, On quasianalyticity and general distributions, Lecture notes, Stanford, 1961.
- [7] B. Droste, Holomorphic approximation of ultradifferentiable functions, Math. Ann. 257 (1981), 293-316. Zbl0463.32007MR637953
- [8] B. Droste, Extension of analytic functional calculus mappings and duality by -closed forms with growth, Math. Ann. 261 (1982), 185-200. Zbl0496.46030MR675733
- [9] E. M. Dynkin, An operator calculus based on the Cauchy-Green formula. Russian, Investigations on linear operators and the theory of functions, III, Zap. Nauv cn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30 (1972), 33-39. Zbl0338.47011MR328640
- [10] J. Eschmeier – M. Putinar, “Spectral Decompositions and Analytic Sheaves”, Clarendon Press, Oxford, 1996. Zbl0855.47013MR1420618
- [11] L. Hörmander, “The Analysis of Linear Partial Differential Operators I”, Sec. Ed. Springer-Verlag, 1990. Zbl0712.35001
- [12] V. Kordula – Müller, Vasilescu-Martinelli formula for operators in Banach spaces, Studia Math. 113 (1995), 127-139. Zbl0819.47019MR1318420
- [13] T. H. Nguyen, Calcul fonctionnel dependant de la croissance des coefficients spectraux, Ann. Inst. Fourier (Grenoble) 27 (1977), 169-199. Zbl0338.47010MR500158
- [14] M. Putinar, The superposition property for Taylor’s functional calculus, J. Operator Theory 7 (1982), 149-155. Zbl0483.46028MR650199
- [15] W. Rudin, “Functional Analysis”, McGraw-Hill, 1973. Zbl0253.46001MR365062
- [16] S. Sandberg, On non-holomorphic functional calculus for commuting operators, To appear in Math. Scand. Zbl1066.32008MR1997876
- [17] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191. Zbl0233.47024MR268706
- [18] J. L. Taylor, The analytic-functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38. Zbl0233.47025MR271741
- [19] F. H. Vasilescu, “Analytic functional calculus and spectral decompositions”, Mathematics and its Applications (East European Series), D. Reidel Publ. Co., Dordrecht-Boston, Mass., 1982. Zbl0495.47013MR690957
- [20] L. Waelbroeck, Calcul symbolique lié à la croissance de la résolvant, Rend. Sem. Mat. Fis. Milano, 34 (1964). Zbl0145.16701MR170220
- [21] J. Wermer, The existence of invariant subspaces, Duke Math. J. 19 (1952), 615-622. Zbl0047.35806MR50799
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.