Non-holomorphic functional calculus for commuting operators with real spectrum

Mats Andersson; Bo Berndtsson

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 4, page 925-955
  • ISSN: 0391-173X

Abstract

top
We consider n -tuples of commuting operators a = a 1 , ... , a n on a Banach space with real spectra. The holomorphic functional calculus for a is extended to algebras of ultra-differentiable functions on n , depending on the growth of exp ( i a · t ) , t n , when | t | . In the non-quasi-analytic case we use the usual Fourier transform, whereas for the quasi-analytic case we introduce a variant of the FBI transform, adapted to ultradifferentiable classes.

How to cite

top

Andersson, Mats, and Berndtsson, Bo. "Non-holomorphic functional calculus for commuting operators with real spectrum." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.4 (2002): 925-955. <http://eudml.org/doc/84492>.

@article{Andersson2002,
abstract = {We consider $n$-tuples of commuting operators $a=a_1,\ldots ,a_n$ on a Banach space with real spectra. The holomorphic functional calculus for $a$ is extended to algebras of ultra-differentiable functions on $\mathbb \{R\}^n$, depending on the growth of $\Vert \exp (ia\cdot t)\Vert $, $t\in \mathbb \{R\}^n$, when $|t|\rightarrow \infty $. In the non-quasi-analytic case we use the usual Fourier transform, whereas for the quasi-analytic case we introduce a variant of the FBI transform, adapted to ultradifferentiable classes.},
author = {Andersson, Mats, Berndtsson, Bo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {functional calculus; joint spectrum; algebras of ultra-differentiable functions; Fourier transform; FBI transform},
language = {eng},
number = {4},
pages = {925-955},
publisher = {Scuola normale superiore},
title = {Non-holomorphic functional calculus for commuting operators with real spectrum},
url = {http://eudml.org/doc/84492},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Andersson, Mats
AU - Berndtsson, Bo
TI - Non-holomorphic functional calculus for commuting operators with real spectrum
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 4
SP - 925
EP - 955
AB - We consider $n$-tuples of commuting operators $a=a_1,\ldots ,a_n$ on a Banach space with real spectra. The holomorphic functional calculus for $a$ is extended to algebras of ultra-differentiable functions on $\mathbb {R}^n$, depending on the growth of $\Vert \exp (ia\cdot t)\Vert $, $t\in \mathbb {R}^n$, when $|t|\rightarrow \infty $. In the non-quasi-analytic case we use the usual Fourier transform, whereas for the quasi-analytic case we introduce a variant of the FBI transform, adapted to ultradifferentiable classes.
LA - eng
KW - functional calculus; joint spectrum; algebras of ultra-differentiable functions; Fourier transform; FBI transform
UR - http://eudml.org/doc/84492
ER -

References

top
  1. [1] D. W. Albrecht, Explicit formulae for Taylor’s functional calculus, Multivariable operator theory (Seattle, WA, 1993), 1-5, Contemp. Math. 185, AMS. Providence, RI. 1995. Zbl0842.47009MR1332052
  2. [2] D. W. Albrecht, Integral formulae for special cases of Taylor’s functional calculus, Studia Math. 105 (1993), 51-68. Zbl0810.47013MR1222188
  3. [3] M. Andersson, Taylor’s functional calculus with Cauchy-Fantappie-Leray formulas, Int. Math. Res. Not. 6 (1997), 247-258. Zbl1061.47502MR1440302
  4. [4] M. Andersson, Correction to Taylor’s functional calculus with Cauchy-Fantappie-Leray formulas, Int. Math. Res. Not. 2 (1998), 123-124. Zbl1061.47502MR1604824
  5. [5] M. Andersson – B. Berndtsson, Almost holomorphic extensions of ultradifferentiable functions, to appear in J. d’Analyse. Zbl1061.30028MR1981924
  6. [6] A. Beurling, On quasianalyticity and general distributions, Lecture notes, Stanford, 1961. 
  7. [7] B. Droste, Holomorphic approximation of ultradifferentiable functions, Math. Ann. 257 (1981), 293-316. Zbl0463.32007MR637953
  8. [8] B. Droste, Extension of analytic functional calculus mappings and duality by ¯ -closed forms with growth, Math. Ann. 261 (1982), 185-200. Zbl0496.46030MR675733
  9. [9] E. M. Dynkin, An operator calculus based on the Cauchy-Green formula. ( Russian ) , Investigations on linear operators and the theory of functions, III, Zap. Nauv cn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30 (1972), 33-39. Zbl0338.47011MR328640
  10. [10] J. Eschmeier – M. Putinar, “Spectral Decompositions and Analytic Sheaves”, Clarendon Press, Oxford, 1996. Zbl0855.47013MR1420618
  11. [11] L. Hörmander, “The Analysis of Linear Partial Differential Operators I”, Sec. Ed. Springer-Verlag, 1990. Zbl0712.35001
  12. [12] V. Kordula – Müller, Vasilescu-Martinelli formula for operators in Banach spaces, Studia Math. 113 (1995), 127-139. Zbl0819.47019MR1318420
  13. [13] T. H. Nguyen, Calcul fonctionnel dependant de la croissance des coefficients spectraux, Ann. Inst. Fourier (Grenoble) 27 (1977), 169-199. Zbl0338.47010MR500158
  14. [14] M. Putinar, The superposition property for Taylor’s functional calculus, J. Operator Theory 7 (1982), 149-155. Zbl0483.46028MR650199
  15. [15] W. Rudin, “Functional Analysis”, McGraw-Hill, 1973. Zbl0253.46001MR365062
  16. [16] S. Sandberg, On non-holomorphic functional calculus for commuting operators, To appear in Math. Scand. Zbl1066.32008MR1997876
  17. [17] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191. Zbl0233.47024MR268706
  18. [18] J. L. Taylor, The analytic-functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38. Zbl0233.47025MR271741
  19. [19] F. H. Vasilescu, “Analytic functional calculus and spectral decompositions”, Mathematics and its Applications (East European Series), D. Reidel Publ. Co., Dordrecht-Boston, Mass., 1982. Zbl0495.47013MR690957
  20. [20] L. Waelbroeck, Calcul symbolique lié à la croissance de la résolvant, Rend. Sem. Mat. Fis. Milano, 34 (1964). Zbl0145.16701MR170220
  21. [21] J. Wermer, The existence of invariant subspaces, Duke Math. J. 19 (1952), 615-622. Zbl0047.35806MR50799

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.