CL-spaces and numerical radius attaining operators.
María D. Acosta (1990)
Extracta Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
María D. Acosta (1990)
Extracta Mathematicae
Similarity:
Maria D. Acosta, Francisco J. Aguirre, Rafael Payá (1992)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
María D. Acosta, Rafael Payá Albert (1987)
Extracta Mathematicae
Similarity:
María D. Acosta, M. Ruiz Galán (2000)
Extracta Mathematicae
Similarity:
In this note we deal with a version of James' Theorem for numerical radius, which was already considered in [4]. First of all, let us recall that this well known classical result states that a Banach space satisfying that all the (bounded and linear) functionals attain the norm, has to be reflexive [16].
Antonio J. Guirao, Olena Kozhushkina (2013)
Studia Mathematica
Similarity:
We show that the set of bounded linear operators from X to X admits a Bishop-Phelps-Bollobás type theorem for numerical radius whenever X is ℓ₁(ℂ) or c₀(ℂ). As an essential tool we provide two constructive versions of the classical Bishop-Phelps-Bollobás theorem for ℓ₁(ℂ).
Miguel Martín, Rafael Payá (2000)
Studia Mathematica
Similarity:
We show that the numerical index of a -, -, or -sum of Banach spaces is the infimum of the numerical indices of the summands. Moreover, we prove that the spaces C(K,X) and (K any compact Hausdorff space, μ any positive measure) have the same numerical index as the Banach space X. We also observe that these spaces have the so-called Daugavet property whenever X has the Daugavet property.
Miguel Martín (2000)
Extracta Mathematicae
Similarity:
V. Pellegrini (1975)
Studia Mathematica
Similarity:
Karahanyan, M.I. (2005)
Lobachevskii Journal of Mathematics
Similarity: