Nonlinear Volterra integral equation of the second kind and biorthogonal systems.
Berenguer, M.I., Gámez, D., Garralda-Guillem, A.I., Pérez, M.C.Serrano (2010)
Abstract and Applied Analysis
Similarity:
Berenguer, M.I., Gámez, D., Garralda-Guillem, A.I., Pérez, M.C.Serrano (2010)
Abstract and Applied Analysis
Similarity:
Berenguer, M.I., Garralda-Guillem, A.I., Galán, M.Ruiz (2010)
Fixed Point Theory and Applications [electronic only]
Similarity:
Berenguer, M.I., Gámez, D., Garralda-Guillem, A.I., Galán, M.Ruiz, Pérez, M.C.Serrano (2009)
Abstract and Applied Analysis
Similarity:
Jiří Vaníček (1960)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Badr, Abdallah A. (2010)
Mathematical Problems in Engineering
Similarity:
Hadizadeh, M., Mohamadsohi, M. (2005)
Journal of Applied Mathematics
Similarity:
G. Schechtman (1978-1979)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
Bica, Alexandru, Căuş, Vasile Aurel, Mureşan, Sorin (2006)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Similarity:
Lech Drewnowski (1988)
Studia Mathematica
Similarity:
Alexandre Janon, Maëlle Nodet, Clémentine Prieur (2013)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
We present a reduced basis offline/online procedure for viscous Burgers initial boundary value problem, enabling efficient approximate computation of the solutions of this equation for parametrized viscosity and initial and boundary value data. This procedure comes with a fast-evaluated rigorous error bound certifying the approximation procedure. Our numerical experiments show significant computational savings, as well as efficiency of the error bound.