Displaying similar documents to “Trajectory sensitivity method and master-slave synchronization to estimate parameters of nonlinear systems.”

On the anti–synchronization detection for the generalized Lorenz system and its applications to secure encryption

Volodymyr Lynnyk, Sergej Čelikovský (2010)

Kybernetika

Similarity:

In this paper, a modified version of the Chaos Shift Keying (CSK) scheme for secure encryption and decryption of data will be discussed. The classical CSK method determines the correct value of binary signal through checking which initially unsynchronized system is getting synchronized. On the contrary, the new anti-synchronization CSK (ACSK) scheme determines the wrong value of binary signal through checking which already synchronized system is loosing synchronization. The ACSK scheme...

Nonlinear state observers and extended Kalman filters for battery systems

Andreas Rauh, Saif S. Butt, Harald Aschemann (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

The focus of this paper is to develop reliable observer and filtering techniques for finite-dimensional battery models that adequately describe the charging and discharging behaviors. For this purpose, an experimentally validated battery model taken from the literature is extended by a mathematical description that represents parameter variations caused by aging. The corresponding disturbance models account for the fact that neither the state of charge, nor the above-mentioned parameter...

Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems

Philippe Moireau, Dominique Chapelle (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We propose a general reduced-order filtering strategy adapted to Unscented Kalman Filtering for any choice of sampling points distribution. This provides tractable filtering algorithms which can be used with large-dimensional systems when the uncertainty space is of reduced size, and these algorithms only invoke the original dynamical and observation operators, namely, they do not require tangent operator computations, which of course is of considerable benefit when nonlinear operators...