Nonlinear state observers and extended Kalman filters for battery systems
Andreas Rauh; Saif S. Butt; Harald Aschemann
International Journal of Applied Mathematics and Computer Science (2013)
- Volume: 23, Issue: 3, page 539-556
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Aylor, J., Thieme, A. and Johnso, B. (1992). A battery state-of-charge indicator for electric wheelchairs, IEEE Transactions on Industrial Electronics 39(5): 398-409.
- Benger, R., Jiang, M., Beck, H., Wenzl, H., Ohms, D. and Schaedlich, G. (2009). Electrochemical and thermal modeling of lithium-ion cells for use in HEV or EV application, World Electric Vehicle Journal 3: 1-10, http://www.evs24.org/wevajournal/vol3/title.html.
- Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M. and Scarsi, R. (2001). Discrete-time battery models for system-level low-power design, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9(5): 630-640.
- Bhangu, B., Bentley, P., Stone, D. and Bingham, C. (2005). Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles, IEEE Transactions on Vehicular Technology 54(3): 783-794.
- Bo, C., Zhifeng, B. and Binggang, C. (2008). State of charge estimation based on evolutionary neural network, Journal of Energy Conversion and Management 49(10): 2788-2794.
- Buller, S., Thele, M., Doncker, R. and Karden, E. (2005). Impedance based simulation models of supercapacitors and Li-ion batteries for power electronic applications, IEEE Transactions on Industry Applications 41(3): 742-747.
- Chan, C., Lo, E. and Weixiang, S. (2000). The available capacity computation model based on artificial neural network for lead-acid batteries in electric vehicles, Journal of Power Sources 87(1-2): 201-204.
- Chen, M. and Rincon-Mora, G. (2006). Accurate electrical battery model capable of predicting runtime and I-V performance, IEEE Transactions on Energy Conversion 21(2): 504-511.
- Chiasson, J. and Vairamohan, B. (2005). Estimating the state of charge of a battery, IEEE Transactions on Control Systems Technology 13(3): 465-470.
- Erdinc, O., Vural, B. and Uzunoglu, M. (2009). A dynamic lithium-ion battery model considering the effects of temperature and capacity fading, International Conference on Clean Electrical Power, Capri, Italy, pp. 383-386.
- Gomadam, P., Weidner, J., Dougal, R. and White, R. (2002). Mathematical modeling of lithium-ion and nickel battery systems, Journal of Power Sources 110(2): 267-284.
- Gu, W. and Wang, C. (2000). Thermal-electrochemical modeling of battery systems, Journal of The Electrochemical Society 147(8): 2910-2922.
- Isidori, A. (1995). Nonlinear Control Systems, 1: An Introduction, Springer-Verlag, Berlin. Zbl0878.93001
- Johnson, V. (2002). Battery performance models in ADVISOR, Journal of Power Sources 110(2): 321-329.
- Junping, W., Jingang, G. and Lei, D. (2009). An adaptive Kalman filtering based state of charge combined estimator for electric vehicle battery pack, Journal of Energy Conversion and Management 50(12): 3182-3186.
- Kim, I. (2006). The novel state of charge estimation method for lithium battery using sliding mode observer, Journal of Power Sources 163(1): 584-590.
- Klein, R., Chaturvedi, N., Christensen, J., Ahmed, J., Findeisen, R. and Kojic, A. (2012). Electrochemical model based observer design for a lithium-ion battery, IEEE Transactions on Control Systems Technology PP(99): 1-13.
- Krener, J. and Isidori, A. (1983). Linearization by output injection and nonlinear observers, Journal of Systems and Control Letters 3(1): 47-52. Zbl0524.93030
- Leska, M., Prabel, R., Rauh, A. and Aschemann, H. (2011). Simulation and optimization of the longitudinal dynamics of parallel hybrid railway vehicles, in E. Schnieder and G. Tarnai (Eds.), FORMS/FORMAT 2010, Springer, Berlin/Heidelberg, pp. 155-164.
- Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control, International Journal of Control 76(9-10): 924-941. Zbl1049.93014
- Mohinder, S. and Andrews, P. (2001). Kalman Filtering: Theory and Practice-Using MATLAB, 2nd Edn., Wiley-Interscience, Hoboken, NJ. Zbl1322.93001
- Pang, S., Farrell, J., Du, J. and Barth, M. (2001). Battery state-of-charge estimation, American Control Conference, Arlington, VA, USA, Vol. 2, pp. 1644-1649.
- Plett, G. (2004a). Extended Kalman filtering for battery management systems of LIPB-based HEV battery packs, Part 1: Background, Journal of Power Sources 134(2): 252-261.
- Plett, G. (2004b). Extended Kalman filtering for battery management systems of LIPB-based HEV battery packs, Part 2: Modeling and identification, Journal of Power Sources 134(2): 262-276.
- Plett, G. (2004c). Extended Kalman filtering for battery management systems of LIPB-based HEV battery packs, Part 3: State and parameter estimation, Journal of Power Sources 134(2): 277-292.
- Rauh, A. and Aschemann, H. (2012). Sensitivity-based state and parameter estimation for lithium-ion battery systems, 9th International Conference on System Identification and Control Problems, SICPRO'12, Moscow, Russia, pp. 469-485.
- Rauh, A., Minisini, J. and Hofer, E. (2009). Verification techniques for sensitivity analysis and design of controllers for nonlinear dynamic systems with uncertainties, International Journal of Applied Mathematics and Computer Science 19(3): 425-439, DOI: 10.2478/v10006-009-0035-1. Zbl1300.93060
- Rauh, A., Weitschat, R. and Aschemann, H. (2010). Modellgestützter Beobachterentwurf zur Betriebszustandsund Alterungserkennung für Lithium-Ionen-Batterien, VDI-Berichte 2105: Innovative Fahrzeugantriebe 2010 Die Vielfalt der Mobilitt: Vom Verbrenner bis zum E-Motor: 7. VDI-Tagung Innovative Fahrzeugantriebe, Dresden, Germany, pp. 377-382.
- Remmlinger, J., Buchholz, M., Meiler, M., Bernreuter, P. and Dietmayer, K. (2011). State-of-health monitoring of lithium-ion batteries in electric vehicles by on board internal resistance estimation, Journal of Power Sources 196(12): 5357-5363.
- Rong, P. and Pedram, M. (2006). An analytical model for predicting the remaining battery capacity of lithium-ion batteries, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 14(5): 441-451.
- Salameh, Z., Casacca, M. and Lynch, W. (1992). A mathematical model for lead-acid batteries, IEEE Transactions on Energy Conversion 7(1): 93-98.
- Serrao, L., Chehab, Z., Guezennee, Y. and Rizzoni, G. (2005). An aging model of Ni-MH batteries for hybrid electric vehicles, IEEE Conference on Vehicle Power and Propulsion, Chicago, IL, USA, pp. 78-85.
- Shen, Y. (2010). Adaptive online state-of-charge determination based on neuro-controller and neural network, Journal of Energy Conversion and Management 51(5): 1093-1098.
- Smith, K., Rahn, C. and Wang, C. (2010). Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries, IEEE Transactions on Control Systems Technology 3(18): 654-663.
- Stengel, R. (1994). Optimal Control and Estimation, Dover Publications, Inc, Mineola, NY. Zbl0854.93001
- Wang, C. and Srinivasan, V. (2002). Computational battery dynamics (CBD)-electrochemical/thermal coupled modeling and multi-scale modeling, Journal of Power Sources 110(2): 364-376.
- Xu, D., Jiang, B., Shi, P. (2012). Nonlinear actuator fault estimation observer: An inverse system approach via a T-S fuzzy model, International Journal of Applied Mathematics and Computer Science 22(1): 183-196, DOI: 10.2478/v10006-012-0014-9. Zbl1273.93105
- Zeitz, M. (1987). The extended Luenberger observer for nonlinear systems, Systems and Control Letters 9(2): 149-156. Zbl0624.93012
- Zhang, F., Liu, G. and Fang, L. (2008). A battery state of charge estimation method using sliding mode observer, 7th World Congress on Intelligent Control and Automation, WCICA 2008, Chongqing, China, pp. 989-994.
- Zhirabok, A. and Shumsky, A. (2012). An approach to the analysis of observability and controllability in nonlinear systems via linear methods, International Journal of Applied Mathematics and Computer Science 22(3): 507-522, DOI: 10.2478/v10006-012-0038-1. Zbl1302.93048
Citations in EuDML Documents
top- Andreas Rauh, Luise Senkel, Harald Aschemann, Vasily V. Saurin, Georgy V. Kostin, An integrodifferential approach to modeling, control, state estimation and optimization for heat transfer systems
- Benoît Schwaller, Denis Ensminger, Birgitta Dresp-Langley, José Ragot, State estimation for miso non-linear systems in controller canonical form