Displaying similar documents to “An LPV fractional model for canal control.”

Extension of first order Predictive Functional Controllers to handle higher order internal models

Mohamed Tarek Khadir, John V. Ringwood (2008)

International Journal of Applied Mathematics and Computer Science

Similarity:

Predictive Functional Control (PFC), belonging to the family of predictive control techniques, has been demonstrated as a powerful algorithm for controlling process plants. The input/output PFC formulation has been a particularly attractive paradigm for industrial processes, with a combination of simplicity and effectiveness. Though its use of a lag plus delay ARX/ARMAX model is justified in many applications, there exists a range of process types which may present difficulties, leading...

A multi-model approach to Saint-Venant equations: A stability study by LMIs

Valérie Dos Santos Martins, Mickael Rodrigues, Mamadou Diagne (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper deals with the stability study of the nonlinear Saint-Venant Partial Differential Equation (PDE). The proposed approach is based on the multi-model concept which takes into account some Linear Time Invariant (LTI) models defined around a set of operating points. This method allows describing the dynamics of this nonlinear system in an infinite dimensional space over a wide operating range. A stability analysis of the nonlinear Saint-Venant PDE is proposed both by using Linear...

Design of a control architecture for an underwater remotely operated vehicle (ROV) used for search and rescue operations

Ralph Gerard B. Sangalang, Diether Jhay S. Masangcay, Cleo Martin R. Torino, Diane Jelyn C. Gutierrez (2022)

Kybernetika

Similarity:

A control system architecture design for an underwater ROV, primarily Class I - Pure Observation underwater ROV is presented in this paper. A non-linear plant model was designed using SolidWorks 3D modeling tool and is imported to MATLAB as a 3D model. The non-linear modeled plant is linearized using the MATLAB linear analysis toolbox to have a linear approximate model of the system. The authors designed controllers for the linear plant model of underwater ROV. PID controllers are utilized...

Designing a ship course controller by applying the adaptive backstepping method

Anna Witkowska, Roman Śmierzchalski (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

The article discusses the problem of designing a proper and efficient adaptive course-keeping control system for a seagoing ship based on the adaptive backstepping method. The proposed controller in the design stage takes into account the dynamic properties of the steering gear and the full nonlinear static maneuvering characteristic. The adjustable parameters of the achieved nonlinear control structure were tuned up by using the genetic algorithm in order to optimize the system performance....

Nonlinear system identification using heterogeneous multiple models

Rodolfo Orjuela, Benoît Marx, José Ragot, Didier Maquin (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

Multiple models are recognised by their abilities to accurately describe nonlinear dynamic behaviours of a wide variety of nonlinear systems with a tractable model in control engineering problems. Multiple models are built by the interpolation of a set of submodels according to a particular aggregation mechanism, with the heterogeneous multiple model being of particular interest. This multiple model is characterized by the use of heterogeneous submodels in the sense that their state...