Some properties of the locally conformal Kähler manifold
Mileva Prvanović (2010)
Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques
Similarity:
Mileva Prvanović (2010)
Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques
Similarity:
Takano, Kazuhiko (1991)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Mileva Prvanović (2013)
Communications in Mathematics
Similarity:
By using the technique of decomposition of a Hermitian vector space under the action of a unitary group, Ganchev [2] obtained a tensor which he named the Weyl component of the antiholomorphic curvature tensor. We show that the same tensor can be obtained by direct application of the conformal change of the metric to the antiholomorphic curvature tensor. Also, we find some other conformally curvature tensors and examine some relations between them.
Ewert-Krzemieniewski, Stanislaw (2003)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Kazuhiko Takano (1993)
Colloquium Mathematicae
Similarity:
Ganchev, Georgi, Gribachev, Kostadin, Mikhova, Vesselka (1987)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Özgür, Cihan, De, Uday Chand (2006)
Mathematica Pannonica
Similarity:
Prvanović, Mileva (1991)
Mathematica Pannonica
Similarity:
Endo, Hiroshi (1994)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Mileva Prvanović (2012)
Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques
Similarity:
Dorota Łuczyszyn (2005)
Open Mathematics
Similarity:
Let B be the Bochner curvature tensor of a para-Kählerian manifold. It is proved that if the manifold is Bochner parallel (∇ B = 0), then it is Bochner flat (B = 0) or locally symmetric (∇ R = 0). Moreover, we define the notion of tha paraholomorphic pseudosymmetry of a para-Kählerian manifold. We find necessary and sufficient conditions for a Bochner flat para-Kählerian manifold to be paraholomorphically pseudosymmetric. Especially, in the case when the Ricci operator is diagonalizable,...