The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Unstable periodic wave solutions of nerve axion diffusion equations.”

The logarithmic delay of KPP fronts in a periodic medium

François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik (2016)

Journal of the European Mathematical Society

Similarity:

We extend, to parabolic equations of the KPP type in periodic media, a result of Bramson which asserts that, in the case of a spatially homogeneous reaction rate, the time lag between the position of an initially compactly supported solution and that of a traveling wave grows logarithmically in time.

The speed of propagation for KPP type problems. I: Periodic framework

Henry Berestycki, François Hamel, Nikolai Nadirashvili (2005)

Journal of the European Mathematical Society

Similarity:

This paper is devoted to some nonlinear propagation phenomena in periodic and more general domains, for reaction-diffusion equations with Kolmogorov–Petrovsky–Piskunov (KPP) type nonlinearities. The case of periodic domains with periodic underlying excitable media is a follow-up of the article [7]. It is proved that the minimal speed of pulsating fronts is given by a variational formula involving linear eigenvalue problems. Some consequences concerning the influence of the geometry of...