Semirings whose additive endomorphisms are multiplicative
Tomáš Kepka (1993)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A ring or an idempotent semiring is associative provided that additive endomorphisms are multiplicative.
Tomáš Kepka (1993)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A ring or an idempotent semiring is associative provided that additive endomorphisms are multiplicative.
Roger Crocker (1969)
Colloquium Mathematicae
Similarity:
I. Kátai (1977)
Colloquium Mathematicae
Similarity:
W. Narkiewicz (1974)
Colloquium Mathematicae
Similarity:
Janusz Matkowski (2004)
Open Mathematics
Similarity:
Mireille Grillet (1970)
Fundamenta Mathematicae
Similarity:
de Lucia, Paolo, Pap, Endre (2003)
Novi Sad Journal of Mathematics
Similarity:
I. Kátai (1969)
Colloquium Mathematicae
Similarity:
Eduard Wirsing, Don Zagier (2001)
Acta Arithmetica
Similarity:
L. Drewnowski (1978)
Colloquium Mathematicae
Similarity: