Modulational stability of Korteweg-de Vries and Boussinesq wavetrains.
Shivamoggi, Bhimsen K., Debnath, Lokenath (1983)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Shivamoggi, Bhimsen K., Debnath, Lokenath (1983)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Chen, Cha'o-Kuang, Lin, Ming-Che (2009)
Mathematical Problems in Engineering
Similarity:
Karjanto, N., Tiong, K.M. (2011)
Journal of Applied Mathematics
Similarity:
Giuseppe Mulone, Salvatore Rionero, Brian Straughan (1996)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
We derive a very sharp nonlinear stability result for the problem of thermal convection in a layer of dielectric fluid subject to an alternating current (AC). It is particularly important to note that the size of the initial energy in which we establish global nonlinear stability is not restricted whatsoever, and the Rayleigh-Roberts number boundary coincides with that found by a formal linear instability analysis.
V. D. Đorđević (2006)
Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques
Similarity:
Claudio Muñoz (2011-2012)
Séminaire Laurent Schwartz — EDP et applications
Similarity:
The aim of this note is to give a short review of our recent work (see []) with Miguel A. Alejo and Luis Vega, concerning the -stability, and asymptotic stability, of the - of the Korteweg-de Vries (KdV) equation.
Chen, Cha'O-Kuang, Lai, Dong-Yu (2010)
Mathematical Problems in Engineering
Similarity:
Kovriguine, D.A., Maugin, G.A., Potapov, A.I. (2006)
Mathematical Problems in Engineering
Similarity:
Stubbe, Joachim (1989)
Portugaliae mathematica
Similarity: