-stability of multi-solitons
- [1] Department of Mathematics The University of Chicago 5734 S. University Avenue Chicago, Illinois 60637 USA
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- Volume: 2011-2012, page 1-9
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topMuñoz, Claudio. "$L^2$-stability of multi-solitons." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-9. <http://eudml.org/doc/251171>.
@article{Muñoz2011-2012,
abstract = {The aim of this note is to give a short review of our recent work (see [5]) with Miguel A. Alejo and Luis Vega, concerning the $L^2$-stability, and asymptotic stability, of the $N$-soliton of the Korteweg-de Vries (KdV) equation.},
affiliation = {Department of Mathematics The University of Chicago 5734 S. University Avenue Chicago, Illinois 60637 USA},
author = {Muñoz, Claudio},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {eng},
pages = {1-9},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {$L^2$-stability of multi-solitons},
url = {http://eudml.org/doc/251171},
volume = {2011-2012},
year = {2011-2012},
}
TY - JOUR
AU - Muñoz, Claudio
TI - $L^2$-stability of multi-solitons
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 9
AB - The aim of this note is to give a short review of our recent work (see [5]) with Miguel A. Alejo and Luis Vega, concerning the $L^2$-stability, and asymptotic stability, of the $N$-soliton of the Korteweg-de Vries (KdV) equation.
LA - eng
UR - http://eudml.org/doc/251171
ER -
References
top- M. Ablowitz, and P. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149. Cambridge University Press, Cambridge, 1991. Zbl0762.35001MR1149378
- M. Ablowitz, D. Kaup, A. Newell, and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Appl. Math. 53 (1974), no. 4, 249–315. Zbl0408.35068MR450815
- M. Ablowitz, and H. Segur, Solitons and the inverse scattering transform, SIAM Studies in Applied Mathematics, 4. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981. x+425 pp. Zbl0472.35002MR642018
- J. Albert, J. Bona, and N. Nguyen, On the stability of KdV multisolitons, Differential Integral Equations 20 (2007), no. 8, 841–878. Zbl1212.35380MR2339841
- Alejo, Miguel A., Muñoz C., and Vega, Luis, The Gardner equation and the -stability of the -soliton solution of the Korteweg–de Vries equation, to appear in Transactions of the AMS (arXiv:1012.5290). Zbl1278.35209
- T.B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. London A 328, (1972) 153–183. MR338584
- J.L. Bona, P. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London 411 (1987), 395–412. Zbl0648.76005MR897729
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV equation, Geom. Funct. Anal. 3 (1993), no. 3, 209-262. Zbl0787.35098MR1215780
- K.W. Chow, R.H.J Grimshaw, and E. Ding, Interactions of breathers and solitons in the extended Korteweg-de Vries equation, Wave Motion 43 (2005) 158–166. Zbl1231.35196MR2186925
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T.Tao, Sharp global well-posedness for KdV and modified KdV on and , J. Amer. Math. Soc. 16 (2003), no. 3, 705–749 (electronic). Zbl1025.35025MR1969209
- C.S. Gardner, M.D. Kruskal, and R. Miura, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys. 9, no. 8 (1968), 1204–1209. Zbl0283.35019MR252826
- F. Gesztesy, and B. Simon, Constructing solutions of the mKdV-equation, J. Funct. Anal. 89 (1990), no. 1, 53–60. Zbl0711.35121MR1040955
- E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems I, Los Alamos Report LA1940 (1955); reproduced in Nonlinear Wave Motion, A.C. Newell, ed., Am. Math. Soc., Providence, R. I., 1974, pp. 143–156. Zbl0353.70028
- R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192–1194. Zbl1168.35423
- C.E. Kenig, and Y. Martel, Global well-posedness in the energy space for a modified KP II equation via the Miura transform, Trans. Amer. Math. Soc. 358 no. 6, pp. 2447–2488. Zbl1106.35082MR2204040
- C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46, (1993) 527–620. Zbl0808.35128MR1211741
- C.E. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no. 3, 617–633. Zbl1034.35145MR1813239
- D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of stationary waves, Philos. Mag. Ser. 5, 39 (1895), 422–443. Zbl26.0881.02
- M.D. Kruskal and N.J. Zabusky, Interaction of “solitons” in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243. Zbl1201.35174
- P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, (1968) 467–490. Zbl0162.41103MR235310
- J.H. Maddocks, and R.L. Sachs, On the stability of KdV multi-solitons, Comm. Pure Appl. Math. 46, 867–901 (1993). Zbl0795.35107MR1220540
- Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity 18 (2005) 55–80. Zbl1064.35171MR2109467
- Y. Martel and F. Merle, Description of two soliton collision for the quartic gKdV equation, preprint arXiv:0709.2672 (2007), to appear in Annals of Mathematics. Zbl1300.37045MR2831108
- Y. Martel and F. Merle, Stability of two soliton collision for nonintegrable gKdV equations, Comm. Math. Phys. 286 (2009), 39–79. Zbl1179.35291MR2470923
- Y. Martel and F. Merle, Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math. 183 (2011), no. 3, 563–648. Zbl1230.35121MR2772088
- Y. Martel, and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann. 341 (2008), no. 2, 391–427. Zbl1153.35068MR2385662
- Y. Martel, F. Merle and T. P. Tsai, Stability and asymptotic stability in the energy space of the sum of solitons for subcritical gKdV equations, Comm. Math. Phys. 231 (2002) 347–373. Zbl1017.35098MR1946336
- F. Merle; and L. Vega, stability of solitons for KdV equation, Int. Math. Res. Not. 2003, no. 13, 735–753. Zbl1022.35061MR1949297
- R.M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9, no. 8 (1968), 1202–1204. Zbl0283.35018MR252825
- R.M. Miura, The Korteweg–de Vries equation: a survey of results, SIAM Review 18, (1976) 412–459. Zbl0333.35021MR404890
- T. Mizumachi, and D. Pelinovsky, Bäcklund transformation and -stability of NLS solitons, preprint. Zbl1239.35148
- T. Mizumachi, and N. Tzvetkov, Stability of the line soliton of the KP–II equation under periodic transverse perturbations, preprint. Zbl1233.35174MR2885592
- C. Muñoz, On the inelastic 2-soliton collision for gKdV equations with general nonlinearity, Int. Math. Research Notices (2010) 2010 (9): 1624–1719. Zbl1198.35234MR2643578
- C. Muñoz, The Gardner equation and the stability of multi-kink solutions of the mKdV equation, preprint arXiv:1106.0648. Zbl1336.35313
- R.L. Pego, and M.I. Weinstein, Asymptotic stability of solitary waves, Commun. Math. Phys. 164, 305–349 (1994). Zbl0805.35117MR1289328
- B. Thaller, The Dirac equation, Texts and Monographs in Physics. Springer-Verlag, Berlin, 1992. xviii+357 pp. Zbl0765.47023MR1219537
- M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure. Appl. Math. 39, (1986) 51—68. Zbl0594.35005MR820338
- M.V. Wickerhauser, Inverse scattering for the heat operator and evolutions in variables, Comm. Math. Phys. 108 (1987), 67–89. Zbl0633.35070MR872141
- P. E. Zhidkov, Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Mathematics, vol. 1756, Springer-Verlag, Berlin, 2001. Zbl0987.35001MR1831831
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.