L 2 -stability of multi-solitons

Claudio Muñoz[1]

  • [1] Department of Mathematics The University of Chicago 5734 S. University Avenue Chicago, Illinois 60637 USA

Séminaire Laurent Schwartz — EDP et applications (2011-2012)

  • Volume: 2011-2012, page 1-9
  • ISSN: 2266-0607

Abstract

top
The aim of this note is to give a short review of our recent work (see [5]) with Miguel A. Alejo and Luis Vega, concerning the L 2 -stability, and asymptotic stability, of the N -soliton of the Korteweg-de Vries (KdV) equation.

How to cite

top

Muñoz, Claudio. "$L^2$-stability of multi-solitons." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-9. <http://eudml.org/doc/251171>.

@article{Muñoz2011-2012,
abstract = {The aim of this note is to give a short review of our recent work (see [5]) with Miguel A. Alejo and Luis Vega, concerning the $L^2$-stability, and asymptotic stability, of the $N$-soliton of the Korteweg-de Vries (KdV) equation.},
affiliation = {Department of Mathematics The University of Chicago 5734 S. University Avenue Chicago, Illinois 60637 USA},
author = {Muñoz, Claudio},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {eng},
pages = {1-9},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {$L^2$-stability of multi-solitons},
url = {http://eudml.org/doc/251171},
volume = {2011-2012},
year = {2011-2012},
}

TY - JOUR
AU - Muñoz, Claudio
TI - $L^2$-stability of multi-solitons
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 9
AB - The aim of this note is to give a short review of our recent work (see [5]) with Miguel A. Alejo and Luis Vega, concerning the $L^2$-stability, and asymptotic stability, of the $N$-soliton of the Korteweg-de Vries (KdV) equation.
LA - eng
UR - http://eudml.org/doc/251171
ER -

References

top
  1. M. Ablowitz, and P. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149. Cambridge University Press, Cambridge, 1991. Zbl0762.35001MR1149378
  2. M. Ablowitz, D. Kaup, A. Newell, and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Appl. Math. 53 (1974), no. 4, 249–315. Zbl0408.35068MR450815
  3. M. Ablowitz, and H. Segur, Solitons and the inverse scattering transform, SIAM Studies in Applied Mathematics, 4. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981. x+425 pp. Zbl0472.35002MR642018
  4. J. Albert, J. Bona, and N. Nguyen, On the stability of KdV multisolitons, Differential Integral Equations 20 (2007), no. 8, 841–878. Zbl1212.35380MR2339841
  5. Alejo, Miguel A., Muñoz C., and Vega, Luis, The Gardner equation and the L 2 -stability of the N -soliton solution of the Korteweg–de Vries equation, to appear in Transactions of the AMS (arXiv:1012.5290). Zbl1278.35209
  6. T.B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. London A 328, (1972) 153–183. MR338584
  7. J.L. Bona, P. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London 411 (1987), 395–412. Zbl0648.76005MR897729
  8. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV equation, Geom. Funct. Anal. 3 (1993), no. 3, 209-262. Zbl0787.35098MR1215780
  9. K.W. Chow, R.H.J Grimshaw, and E. Ding, Interactions of breathers and solitons in the extended Korteweg-de Vries equation, Wave Motion 43 (2005) 158–166. Zbl1231.35196MR2186925
  10. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T.Tao, Sharp global well-posedness for KdV and modified KdV on and 𝕋 , J. Amer. Math. Soc. 16 (2003), no. 3, 705–749 (electronic). Zbl1025.35025MR1969209
  11. C.S. Gardner, M.D. Kruskal, and R. Miura, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys. 9, no. 8 (1968), 1204–1209. Zbl0283.35019MR252826
  12. F. Gesztesy, and B. Simon, Constructing solutions of the mKdV-equation, J. Funct. Anal. 89 (1990), no. 1, 53–60. Zbl0711.35121MR1040955
  13. E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems I, Los Alamos Report LA1940 (1955); reproduced in Nonlinear Wave Motion, A.C. Newell, ed., Am. Math. Soc., Providence, R. I., 1974, pp. 143–156. Zbl0353.70028
  14. R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192–1194. Zbl1168.35423
  15. C.E. Kenig, and Y. Martel, Global well-posedness in the energy space for a modified KP II equation via the Miura transform, Trans. Amer. Math. Soc. 358 no. 6, pp. 2447–2488. Zbl1106.35082MR2204040
  16. C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46, (1993) 527–620. Zbl0808.35128MR1211741
  17. C.E. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no. 3, 617–633. Zbl1034.35145MR1813239
  18. D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of stationary waves, Philos. Mag. Ser. 5, 39 (1895), 422–443. Zbl26.0881.02
  19. M.D. Kruskal and N.J. Zabusky, Interaction of “solitons” in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243. Zbl1201.35174
  20. P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, (1968) 467–490. Zbl0162.41103MR235310
  21. J.H. Maddocks, and R.L. Sachs, On the stability of KdV multi-solitons, Comm. Pure Appl. Math. 46, 867–901 (1993). Zbl0795.35107MR1220540
  22. Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity 18 (2005) 55–80. Zbl1064.35171MR2109467
  23. Y. Martel and F. Merle, Description of two soliton collision for the quartic gKdV equation, preprint arXiv:0709.2672 (2007), to appear in Annals of Mathematics. Zbl1300.37045MR2831108
  24. Y. Martel and F. Merle, Stability of two soliton collision for nonintegrable gKdV equations, Comm. Math. Phys. 286 (2009), 39–79. Zbl1179.35291MR2470923
  25. Y. Martel and F. Merle, Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math. 183 (2011), no. 3, 563–648. Zbl1230.35121MR2772088
  26. Y. Martel, and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann. 341 (2008), no. 2, 391–427. Zbl1153.35068MR2385662
  27. Y. Martel, F. Merle and T. P. Tsai, Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Comm. Math. Phys. 231 (2002) 347–373. Zbl1017.35098MR1946336
  28. F. Merle; and L. Vega, L 2 stability of solitons for KdV equation, Int. Math. Res. Not. 2003, no. 13, 735–753. Zbl1022.35061MR1949297
  29. R.M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9, no. 8 (1968), 1202–1204. Zbl0283.35018MR252825
  30. R.M. Miura, The Korteweg–de Vries equation: a survey of results, SIAM Review 18, (1976) 412–459. Zbl0333.35021MR404890
  31. T. Mizumachi, and D. Pelinovsky, Bäcklund transformation and L 2 -stability of NLS solitons, preprint. Zbl1239.35148
  32. T. Mizumachi, and N. Tzvetkov, Stability of the line soliton of the KP–II equation under periodic transverse perturbations, preprint. Zbl1233.35174MR2885592
  33. C. Muñoz, On the inelastic 2-soliton collision for gKdV equations with general nonlinearity, Int. Math. Research Notices (2010) 2010 (9): 1624–1719. Zbl1198.35234MR2643578
  34. C. Muñoz, The Gardner equation and the stability of multi-kink solutions of the mKdV equation, preprint arXiv:1106.0648. Zbl1336.35313
  35. R.L. Pego, and M.I. Weinstein, Asymptotic stability of solitary waves, Commun. Math. Phys. 164, 305–349 (1994). Zbl0805.35117MR1289328
  36. B. Thaller, The Dirac equation, Texts and Monographs in Physics. Springer-Verlag, Berlin, 1992. xviii+357 pp. Zbl0765.47023MR1219537
  37. M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure. Appl. Math. 39, (1986) 51—68. Zbl0594.35005MR820338
  38. M.V. Wickerhauser, Inverse scattering for the heat operator and evolutions in 2 + 1 variables, Comm. Math. Phys. 108 (1987), 67–89. Zbl0633.35070MR872141
  39. P. E. Zhidkov, Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Mathematics, vol. 1756, Springer-Verlag, Berlin, 2001. Zbl0987.35001MR1831831

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.