The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A note on the support of right invariant measures.”

The convolution equation P = P * Q of Choquet and Deny and relatively invariant measures on semigroups

Arunava Mukherjea (1971)

Annales de l'institut Fourier

Similarity:

Choquet and Deny considered on an abelian locally compact topological group the representation of a measure P as the convolution product of itself and a finite measure Q : P = P * Q . In this paper, we make an attempt to find, in the case of certain locally compact semigroups, those solutions P of the above equation which are relatively invariant on the support of Q . A characterization of relatively invariant measures on certain locally compact semigroups is also presented. Our results...

The uniqueness of Haar measure and set theory

Piotr Zakrzewski (1997)

Colloquium Mathematicae

Similarity:

Let G be a group of homeomorphisms of a nondiscrete, locally compact, σ-compact topological space X and suppose that a Haar measure on X exists: a regular Borel measure μ, positive on nonempty open sets, finite on compact sets and invariant under the homeomorphisms from G. Under some mild assumptions on G and X we prove that the measure completion of μ is the unique, up to a constant factor, nonzero, σ-finite, G-invariant measure defined on its domain iff μ is ergodic and the G-orbits...

Invariant extension of Haar measure

Antal Járai

Similarity:

CONTENTS§1. Introduction...............................................................5§2. Covariant extension of measures..............................6§3. An invariant extension of Haar measure..................15§4. Covariant extension of Lebesgue measure.............22References....................................................................26