The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Compact diagonal linear operators on Banach spaces with unconditional bases.”

On strong M-bases in Banach spaces with PRI.

Deba P. Sinha (2000)

Collectanea Mathematica

Similarity:

If every member of a class P of Banach spaces has a projectional resolution of the identity such that certain subspaces arising out of this resolution are also in the class P, then it is proved that every Banach space in P has a strong M-basis. Consequently, every weakly countably determined space, the dual of every Asplund space, every Banach space with an M-basis such that the dual unit ball is weak* angelic and every C(K) space for a Valdivia compact set K , has a strong M-basis. ...

Uniformly Gâteaux Differentiable Norms in Spaces with Unconditional Basis

Rychter, Jan (2000)

Serdica Mathematical Journal

Similarity:

*Supported in part by GAˇ CR 201-98-1449 and AV 101 9003. This paper is based on a part of the author’s MSc thesis written under the supervison of Professor V. Zizler. It is shown that a Banach space X admits an equivalent uniformly Gateaux differentiable norm if it has an unconditional basis and X* admits an equivalent norm which is uniformly rotund in every direction.