Self-similar random fractal measures using contraction method in probabilistic metric spaces.
Kolumbán, József, Soós, Anna, Varga, Ibolya (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Kolumbán, József, Soós, Anna, Varga, Ibolya (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Jan Rosiński, Wojbor A. Woyczyński (1987)
Colloquium Mathematicae
Similarity:
J. Rosiński (1984)
Studia Mathematica
Similarity:
Rémi Rhodes, Vincent Vargas (2013)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
In this paper, we study optimal transportation problems for multifractal random measures. Since these measures are much less regular than optimal transportation theory requires, we introduce a new notion of transportation which is intuitively some kind of multistep transportation. Applications are given for construction of multifractal random changes of times and to the existence of random metrics, the volume forms of which coincide with the multifractal random measures.
Islam, Md.Shafiqul, Góra, Pawel, Boyarsky, Abraham (2005)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Yeh, R.Z. (1975)
Portugaliae mathematica
Similarity:
Jan Rosiński
Similarity:
CONTENTSI. Introduction.....................................................................................................................................................................5II. Preliminaries...................................................................................................................................................................7 1. Infinitely divisible probability measures on Banach spaces..........................................................................................7 2....
Davydov, Youri, Molchanov, Ilya, Zuyev, Sergei (2008)
Electronic Journal of Probability [electronic only]
Similarity:
Pierre Jacob, Paulo Eduardo Oliveira (1991)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We consider signed Radon random measures on a separable, complete and locally compact metric space and study mean quadratic convergence with respect to vague topology on the space of measures. We prove sufficient conditions in order to obtain mean quadratic convergence. These results are based on some identification properties of signed Radon measures on the product space, also proved in this paper.
K. Urbanik (1968)
Studia Mathematica
Similarity: