Abundance of hyperbolicity in the topology
Raúl Ures (1995)
Annales scientifiques de l'École Normale Supérieure
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Raúl Ures (1995)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Anatole Katok (1980)
Publications Mathématiques de l'IHÉS
Similarity:
Stephen Smale (1969-1970)
Séminaire Bourbaki
Similarity:
J. Palis (2005)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
Gonzalo Contreras (1992)
Mathematische Zeitschrift
Similarity:
Hayashi, Shuhei (1999)
Annals of Mathematics. Second Series
Similarity:
Pujals, Enrique R., Sambarino, Martín (2000)
Annals of Mathematics. Second Series
Similarity:
Sheldon E. Newhouse (1979)
Publications Mathématiques de l'IHÉS
Similarity:
Roberto Mossa (2016)
Complex Manifolds
Similarity:
Let f : Y → X be a continuous map between a compact real analytic Kähler manifold (Y, g) and a compact complex hyperbolic manifold (X, g0). In this paper we give a lower bound of the diastatic entropy of (Y, g) in terms of the diastatic entropy of (X, g0) and the degree of f . When the lower bound is attained we get geometric rigidity theorems for the diastatic entropy analogous to the ones obtained by G. Besson, G. Courtois and S. Gallot [2] for the volume entropy. As a corollary,when...