Abundance of hyperbolicity in the C 1 topology

Raúl Ures

Annales scientifiques de l'École Normale Supérieure (1995)

  • Volume: 28, Issue: 6, page 747-760
  • ISSN: 0012-9593

How to cite

top

Ures, Raúl. "Abundance of hyperbolicity in the $C^1$ topology." Annales scientifiques de l'École Normale Supérieure 28.6 (1995): 747-760. <http://eudml.org/doc/82401>.

@article{Ures1995,
author = {Ures, Raúl},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {6},
pages = {747-760},
publisher = {Elsevier},
title = {Abundance of hyperbolicity in the $C^1$ topology},
url = {http://eudml.org/doc/82401},
volume = {28},
year = {1995},
}

TY - JOUR
AU - Ures, Raúl
TI - Abundance of hyperbolicity in the $C^1$ topology
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1995
PB - Elsevier
VL - 28
IS - 6
SP - 747
EP - 760
LA - eng
UR - http://eudml.org/doc/82401
ER -

References

top
  1. [AS] R. ABRAHAM and S. SMALE, Non-genericity of Ω-stability (Proc. A.M.S. Symp. Pure Math., Vol. 14, 1970). Zbl0215.25102MR42 #6867
  2. [AM] A. ARAÚJO and R. MAÑ;É, On the existence of hyperbolic attractors and homoclinic tangencies for surfaces diffeomorphisms (to appear). 
  3. [M1] R. MAÑ;É, Contribution to the stability conjecture (Topology, Vol. 17, 1978, pp. 383-396). Zbl0405.58035MR84b:58061
  4. [M2] R. MAÑ;É, A proof of the C1 stability conjecture (Publ. I.H.E.S., Vol. 66, 1988, pp. 161-210). Zbl0678.58022
  5. [MM] A. MANNING and H. MCCLUSKEY, Hausdorff dimension for horseshoes (Erg. Th. and Dyn. Syst., Vol. 3, 1983, pp. 251-261). Zbl0529.58022MR85j:58127
  6. [N1] S. NEWHOUSE, Nondensity of Axiom A (a) on S2 (Proc. A.M.S. Symp. Pure Math., Vol. 14, 1970, pp. 191-202). Zbl0206.25801MR43 #2742
  7. [N2] S. NEWHOUSE, Diffeomorphisms with infinitely many sinks (Topology, Vol. 13, 1974, pp. 9-18). Zbl0275.58016MR49 #4051
  8. [N3] S. NEWHOUSE, The abundance of wild hyperbolic sets and non smooth stable sets for diffeomorphisms (Publ. I.H.E.S., Vol. 50, 1979, pp. 101-151). Zbl0445.58022MR82e:58067
  9. [P] J. PALIS, On the C1 Ω-stability conjecture (Publ. I.H.E.S., Vol. 66, 1988, pp. 211-215). Zbl0648.58019MR89e:58091
  10. [PT1] J. PALIS and F. TAKENS, Hyperbolicity and sensitive-chaotic dynamics at homoclinic bifurcations, Cambridge University Press, 1993. Zbl0790.58014MR94h:58129
  11. [PT2] J. PALIS and F. TAKENS, Hyperbolicity and the creation of homoclinic orbits (Ann. of Math., Vol. 125, 1987, pp. 337-374). Zbl0641.58029MR89b:58118
  12. [PV] J. PALIS and M. VIANA, Continuity of Hausdorff dimension and limit capacity for horseshoes, Dynamical Systems (Lecture Notes in Math., Vol. 1331, 1988, pp. 150-160). Zbl0661.58023MR89k:58231
  13. [PY] J. PALIS and J. C. YOCCOZ, Homoclinic bifurcations : Large Hausdorff dimension and non-hyperbolic behaviour (Acta Math., to appear). 
  14. [S] C. SIMON, Instability in Diff1 (T3) (Lecture Notes in Math., Vol. 206, 1971, pp. 94-97). 
  15. [W] R. WILLIAMS, The "DA" maps of Smale and structural stability (Proc. A.M.S. Symp. Pure Math., Vol. 14, 1970, pp. 329-334). Zbl0213.50303MR41 #9296

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.