Displaying similar documents to “Complex and distributional weights for sieved ultraspherical polynomials.”

On block recursions, Askey's sieved Jacobi polynomials and two related systems

Bernarda Aldana, Jairo Charris, Oriol Mora-Valbuena (1998)

Colloquium Mathematicae


Two systems of sieved Jacobi polynomials introduced by R. Askey are considered. Their orthogonality measures are determined via the theory of blocks of recurrence relations, circumventing any resort to properties of the Askey-Wilson polynomials. The connection with polynomial mappings is examined. Some naturally related systems are also dealt with and a simple procedure to compute their orthogonality measures is devised which seems to be applicable in many other instances.

Connections between Romanovski and other polynomials

Hans Weber (2007)

Open Mathematics


A connection between Romanovski polynomials and those polynomials that solve the one-dimensional Schrödinger equation with the trigonometric Rosen-Morse and hyperbolic Scarf potential is established. The map is constructed by reworking the Rodrigues formula in an elementary and natural way. The generating function is summed in closed form from which recursion relations and addition theorems follow. Relations to some classical polynomials are also given.