Measures of Lindelöf and separability in approach spaces.
Baekeland, R., Lowen, R. (1994)
International Journal of Mathematics and Mathematical Sciences
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Baekeland, R., Lowen, R. (1994)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Lowen, E., Lowen, R. (1988)
International Journal of Mathematics and Mathematical Sciences
Similarity:
E. Lowen, R. Lowen, C. Verbeeck (1997)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
M. Sioen (2001)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Herrmann, Robert A. (1984)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Paolo Lipparini (2014)
Open Mathematics
Similarity:
If is a family of filters over some set I, a topological space X is sequencewise -compact if for every I-indexed sequence of elements of X there is such that the sequence has an F-limit point. Countable compactness, sequential compactness, initial κ-compactness, [λ; µ]-compactness, the Menger and Rothberger properties can all be expressed in terms of sequencewise -compactness for appropriate choices of . We show that sequencewise -compactness is preserved under taking products if and...
E. Lowen, R. Lowen (1989)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Roland Coghetto (2015)
Formalized Mathematics
Similarity:
Using Mizar [9], and the formal topological space structure (FMT_Space_Str) [19], we introduce the three U-FMT conditions (U-FMT filter, U-FMT with point and U-FMT local) similar to those VI, VII, VIII and VIV of the proposition 2 in [10]: If to each element x of a set X there corresponds a set B(x) of subsets of X such that the properties VI, VII, VIII and VIV are satisfied, then there is a unique topological structure on X such that, for each x ∈ X, B(x) is the set of neighborhoods...
Aleksander Całka (1983)
Fundamenta Mathematicae
Similarity:
Jerry Vaughan (1983)
Fundamenta Mathematicae
Similarity: