Coherent prohomotopy theory
Timothy Porter (1978)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Timothy Porter (1978)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
J. R. Dennett (1982)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
I. Berstein, P. J. Hilton (1963)
Séminaire Ehresmann. Topologie et géométrie différentielle
Similarity:
West, Robert W. (1972)
Portugaliae mathematica
Similarity:
Michael A. Mandell (2006)
Publications Mathématiques de l'IHÉS
Similarity:
Finite type nilpotent spaces are weakly equivalent if and only if their singular cochains are quasi-isomorphic as E algebras. The cochain functor from the homotopy category of finite type nilpotent spaces to the homotopy category of E algebras is faithful but not full.
Jerrold Siegel (1980)
Fundamenta Mathematicae
Similarity:
Thomas Müller (1983)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
J. Remedios-Gómez, S. Rodríguez-Machín (2001)
Extracta Mathematicae
Similarity:
Antonio Martínez Cegarra (1999)
Extracta Mathematicae
Similarity:
The purpose of this paper is to present certain facts and results showing a way through which simplicial homotopy theory can be used in the study of Auslander-Goldman-Brauer groups of Azumaya algebras over commutative rings.