Cochains and homotopy type
Publications Mathématiques de l'IHÉS (2006)
- Volume: 103, page 213-246
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topMandell, Michael A.. "Cochains and homotopy type." Publications Mathématiques de l'IHÉS 103 (2006): 213-246. <http://eudml.org/doc/104217>.
@article{Mandell2006,
abstract = {Finite type nilpotent spaces are weakly equivalent if and only if their singular cochains are quasi-isomorphic as E∞ algebras. The cochain functor from the homotopy category of finite type nilpotent spaces to the homotopy category of E∞ algebras is faithful but not full.},
author = {Mandell, Michael A.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {homotopy type; -algebra; singular cochains; arithmetic square},
language = {eng},
pages = {213-246},
publisher = {Springer},
title = {Cochains and homotopy type},
url = {http://eudml.org/doc/104217},
volume = {103},
year = {2006},
}
TY - JOUR
AU - Mandell, Michael A.
TI - Cochains and homotopy type
JO - Publications Mathématiques de l'IHÉS
PY - 2006
PB - Springer
VL - 103
SP - 213
EP - 246
AB - Finite type nilpotent spaces are weakly equivalent if and only if their singular cochains are quasi-isomorphic as E∞ algebras. The cochain functor from the homotopy category of finite type nilpotent spaces to the homotopy category of E∞ algebras is faithful but not full.
LA - eng
KW - homotopy type; -algebra; singular cochains; arithmetic square
UR - http://eudml.org/doc/104217
ER -
References
top- 1. A. K. Bousfield, The localization of spaces with respect to homology, Topology, 14 (1975), 133–150. Zbl0309.55013MR380779
- 2. E. Dror, A generalization of the Whitehead theorem, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, WA 1971), Lect. Notes Math., vol. 249, Springer, Berlin, 1971, pp. 13–22. Zbl0243.55018MR350725
- 3. W. G. Dwyer and D. M. Kan, Simplicial localizations of categories, J. Pure Appl. Algebra, 17 (1980), 267–284. Zbl0485.18012MR579087
- 4. W. G. Dwyer and D. M. Kan, Calculating simplicial localizations, J. Pure Appl. Algebra, 18 (1980), 17–35. Zbl0485.18013MR578563
- 5. W. G. Dwyer and D. M. Kan, Function complexes in homotopical algebra, Topology, 19 (1980), 427–440. Zbl0438.55011MR584566
- 6. W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73–126. Zbl0869.55018MR1361887
- 7. V. Hinich, Virtual operad algebras and realization of homotopy types, J. Pure Appl. Algebra, 159 (2001), 173–185. Zbl0992.18007MR1828937
- 8. M. A. Mandell, Equivalence of simplicial localizations of closed model categories, J. Pure Appl. Algebra, 142 (1999), 131–152. Zbl0938.55030MR1715404
- 9. M. A. Mandell, E∞ algebras and p-adic homotopy theory, Topology, 40 (2001), 43–94. Zbl0974.55004
- 10. M. A. Mandell, Equivariant p-adic homotopy theory, Topology Appl., 122 (2002), 637–651. Zbl1003.55003MR1911706
- 11. J. P. May, Simplicial objects in algebraic topology, D. Van Nostrand Co., Inc., Princeton, NJ – Toronto, ON – London, 1967. Zbl0165.26004MR222892
- 12. D. G. Quillen, Homotopical algebra, Lect. Notes Math., vol. 43, Springer, Berlin, 1967. Zbl0168.20903MR223432
- 13. D. G. Quillen, Rational homotopy theory, Ann. Math., 90 (1969), 205–295. Zbl0191.53702MR258031
- 14. J.-P. Serre, Local fields, Springer, New York, 1979. Translated from the French by M. J. Greenberg. Zbl0423.12016MR554237
- 15. V. A. Smirnov, Homotopy theory of coalgebras, Math. USSR–Izv., 27 (1986), 575–592. Zbl0612.55012MR816858
- 16. J. R. Smith, Operads and algebraic homotopy, preprint math.AT/0004003.
- 17. D. Sullivan, The genetics of homotopy theory and the Adams conjecture, Ann. Math., 100 (1974), 1–79. Zbl0355.57007MR442930
- 18. D. Sullivan, Infinitesimal computations in topology, Publ. Math., Inst. Hautes Étud. Sci., 47 (1978), 269–331. Zbl0374.57002MR646078
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.