Displaying similar documents to “Linear filtering with fractional Brownian motion in the signal and observation processes.”

Differential equations driven by fractional Brownian motion.

David Nualart, Aurel Rascanu (2002)

Collectanea Mathematica

Similarity:

A global existence and uniqueness result of the solution for multidimensional, time dependent, stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H > 1/2 is proved. It is shown, also, that the solution has finite moments. The result is based on a deterministic existence and uniqueness theorem whose proof uses a contraction principle and a priori estimates.

Stochastic calculus with respect to fractional Brownian motion

David Nualart (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Fractional Brownian motion (fBm) is a centered self-similar Gaussian process with stationary increments, which depends on a parameter H ( 0 , 1 ) called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case H = 1 / 2 , the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô calculus cannot be used. Different approaches have been introduced to construct stochastic integrals with...

A Milstein-type scheme without Lévy area terms for SDEs driven by fractional brownian motion

A. Deya, A. Neuenkirch, S. Tindel (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In this article, we study the numerical approximation of stochastic differential equations driven by a multidimensional fractional Brownian motion (fBm) with Hurst parameter greater than 1/3. We introduce an implementable scheme for these equations, which is based on a second-order Taylor expansion, where the usual Lévy area terms are replaced by products of increments of the driving fBm. The convergence of our scheme is shown by means of a combination of rough paths techniques and error...