Stochastic calculus with respect to fractional Brownian motion

David Nualart[1]

  • [1] Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona (Spain).

Annales de la faculté des sciences de Toulouse Mathématiques (2006)

  • Volume: 15, Issue: 1, page 63-78
  • ISSN: 0240-2963

Abstract

top
Fractional Brownian motion (fBm) is a centered self-similar Gaussian process with stationary increments, which depends on a parameter H ( 0 , 1 ) called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case H = 1 / 2 , the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô calculus cannot be used. Different approaches have been introduced to construct stochastic integrals with respect to fBm: pathwise techniques, Malliavin calculus, approximation by Riemann sums. We will describe these methods and present the corresponding change of variable formulas. Some applications will be discussed.

How to cite

top

Nualart, David. "Stochastic calculus with respect to fractional Brownian motion." Annales de la faculté des sciences de Toulouse Mathématiques 15.1 (2006): 63-78. <http://eudml.org/doc/10039>.

@article{Nualart2006,
abstract = {Fractional Brownian motion (fBm) is a centered self-similar Gaussian process with stationary increments, which depends on a parameter $H\in (0,1)$ called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case $H=1/2$, the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô calculus cannot be used. Different approaches have been introduced to construct stochastic integrals with respect to fBm: pathwise techniques, Malliavin calculus, approximation by Riemann sums. We will describe these methods and present the corresponding change of variable formulas. Some applications will be discussed.},
affiliation = {Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona (Spain).},
author = {Nualart, David},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {stochastic integrals; Malliavin calculus; change of variable formulas},
language = {eng},
number = {1},
pages = {63-78},
publisher = {Université Paul Sabatier, Toulouse},
title = {Stochastic calculus with respect to fractional Brownian motion},
url = {http://eudml.org/doc/10039},
volume = {15},
year = {2006},
}

TY - JOUR
AU - Nualart, David
TI - Stochastic calculus with respect to fractional Brownian motion
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 1
SP - 63
EP - 78
AB - Fractional Brownian motion (fBm) is a centered self-similar Gaussian process with stationary increments, which depends on a parameter $H\in (0,1)$ called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case $H=1/2$, the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô calculus cannot be used. Different approaches have been introduced to construct stochastic integrals with respect to fBm: pathwise techniques, Malliavin calculus, approximation by Riemann sums. We will describe these methods and present the corresponding change of variable formulas. Some applications will be discussed.
LA - eng
KW - stochastic integrals; Malliavin calculus; change of variable formulas
UR - http://eudml.org/doc/10039
ER -

References

top
  1. E. Alòs, J. A. León, D. Nualart, Stratonovich stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 1/2, Taiwanesse Journal of Mathematics 5 (2001), 609-632 Zbl0989.60054MR1849782
  2. E. Alòs, O. Mazet, D. Nualart, Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1 2 , Stoch. Proc. Appl. 86 (1999), 121-139 Zbl1028.60047MR1741199
  3. E. Alòs, O. Mazet, D. Nualart, Stochastic calculus with respect to Gaussian processes, Annals of Probability 29 (2001), 766-801 Zbl1015.60047MR1849177
  4. E. Alòs, D. Nualart, Stochastic integration with respect to the fractional Brownian motion, Stochastics and Stochastics Reports 75 (2003), 129-152 Zbl1028.60048MR1978896
  5. S. Berman, Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J. 23 (1973), 69-94 Zbl0264.60024MR317397
  6. P. Carmona, L. Coutin, Stochastic integration with respect to fractional Brownian motion, Ann. Institut Henri Poincaré 39 (2003), 27-68 Zbl1016.60043MR1959841
  7. Z. Ciesielski, G. Kerkyacharian, B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, Studia Math. 107 (1993), 171-204 Zbl0809.60004MR1244574
  8. P. Cheridito, Mixed fractional Brownian motion, Bernoulli 7 (2001), 913-934 Zbl1005.60053MR1873835
  9. P. Cheridito, D. Nualart, Stochastic integral of divergence type with respect to the fractional Brownian motion with Hurst parameter H &lt; 1 2 , Ann. Institut Henri Poincaré 41 (2005), 1049-1081 Zbl1083.60027MR2172209
  10. A. Chorin, Vorticity and Turbulence, (1994), Springer-Verlag Zbl0795.76002MR1281384
  11. L. Coutin, D. Nualart, C. A. Tudor, Tanaka formula for the fractional Brownian motion, Stochastic Processes Appl. 94 (2001), 301-315 Zbl1053.60055MR1840834
  12. L. Coutin, Z. Qian, Stochastic analysis, rough paths analysis and fractional Brownian motions, Probab. Theory Rel. Fields 122 (2002), 108-140 Zbl1047.60029MR1883719
  13. L. Decreusefond, A. S. Üstünel, Stochastic analysis of the fractional Brownian motion, Potential Analysis 10 (1998), 177-214 Zbl0924.60034MR1677455
  14. N. Eisenbaum, C. A. Tudor, On squared fractional Brownian motions, Lecture Notes in Math. 1857 (2005), 282-289 Zbl1071.60023MR2126980
  15. F. Flandoli, On a probabilistic description of small scale structures in 3D fluids, Ann. Inst. Henri Poincaré 38 (2002), 207-228 Zbl1017.76074MR1899111
  16. F. Flandoli, M. Gubinelli, The Gibbs ensemble of a vortex filament, Probab. Theory Relat. Fields 122 (2001), 317-340 Zbl0992.60058MR1892850
  17. J. Guerra, D. Nualart, The 1 / H -variation of the divergence integral with respect to the fractional Brownian motion for H &gt; 1 / 2 and fractional Bessel processes, Stoch. Proc. Applications 115 (2005), 289-289 Zbl1075.60056MR2105371
  18. Y. Hu, Integral transformations and anticipative calculus for fractional Brownian motions, Mem. Amer. Math. Soc. 175 (2005) Zbl1072.60044MR2130224
  19. Y. Hu, D. Nualart, Some Processes Associated with Fractional Bessel Processes, J. Theoretical Probability 18 (2005), 377-397 Zbl1074.60050MR2137449
  20. Y. Hu, B. Øksendal, Fractional white noise calculus and applications to finance, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), 1-32 Zbl1045.60072MR1976868
  21. A. N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum., C. R. (Doklady) Acad. URSS (N.S.) 26 (1940), 115-118 Zbl0022.36001MR3441
  22. T. Lyons, Differential equations driven by rough signals (I): An extension of an inequality of L. C. Young, Mathematical Research Letters 1 (1994), 451-464 Zbl0835.34004MR1302388
  23. T. Lyons, Z. Qian, System control and rough paths, (2002), Oxford University Press, Oxford Zbl1029.93001MR2036784
  24. B. B. Mandelbrot, J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Review 10 (1968), 422-437 Zbl0179.47801MR242239
  25. A. Millet, M. Sanz-Solé, Large deviations for rough paths of the fractional Brownian motion Zbl1087.60035
  26. Y. Nourdin, Calcul stochastique généralisé et applications au mouvement brownien fractionnaire; Estimation non-paramétrique de la volatilité et test d’adéquation, (2004) 
  27. D. Nualart, E. Pardoux, Stochastic calculus with anticipating integrands, Prob. Th. Rel. Fields 78 (1988), 535-581 Zbl0629.60061MR950346
  28. D. Nualart, A. Rascanu, Differential equations driven by fractional Brownian motion, Collectanea Mathematica 53 (2002), 55-81 Zbl1018.60057MR1893308
  29. D. Nualart, C. Rovira, S. Tindel, Probabilistic models for vortex filaments based on fractional Brownian motion, Annals of Probability 31 (2003), 1862-1899 Zbl1047.76013MR2016603
  30. V. Pipiras, M. S. Taqqu, Integration questions related to fractional Brownian motion, Probab. Theory Rel. Fields 118 (2000), 121-291 Zbl0970.60058MR1790083
  31. V. Pipiras, M. S. Taqqu, Are classes of deterministic integrands for fractional Brownian motion on a interval complete?, Bernoulli 7 (2001), 873-897 Zbl1003.60055MR1873833
  32. L. C. G. Rogers, Arbitrage with fractional Brownian motion, Math. Finance 7 (1997), 95-105 Zbl0884.90045MR1434408
  33. F. Russo, P. Vallois, Forward, backward and symmetric stochastic integration, Probab. Theory Rel. Fields 97 (1993), 403-421 Zbl0792.60046MR1245252
  34. A. V. Skorohod, On a generalization of a stochastic integral, Theory Probab. Appl. 20 (1975), 219-233 Zbl0333.60060MR391258
  35. H. J. Sussmann, On the gap between deterministic and stochastic ordinary differential equations, Ann. Probability 6 (1978), 19-41 Zbl0391.60056MR461664
  36. L. C. Young, An inequality of the Hölder type connected with Stieltjes integration, Acta Math. 67 (1936), 251-282 Zbl0016.10404
  37. M. Zähle, Integration with respect to fractal functions and stochastic calculus. I., Probab. Theory Related Fields 111 (1998), 333-374 Zbl0918.60037MR1640795

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.