Stochastic calculus with respect to fractional Brownian motion
- [1] Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona (Spain).
Annales de la faculté des sciences de Toulouse Mathématiques (2006)
- Volume: 15, Issue: 1, page 63-78
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topNualart, David. "Stochastic calculus with respect to fractional Brownian motion." Annales de la faculté des sciences de Toulouse Mathématiques 15.1 (2006): 63-78. <http://eudml.org/doc/10039>.
@article{Nualart2006,
abstract = {Fractional Brownian motion (fBm) is a centered self-similar Gaussian process with stationary increments, which depends on a parameter $H\in (0,1)$ called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case $H=1/2$, the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô calculus cannot be used. Different approaches have been introduced to construct stochastic integrals with respect to fBm: pathwise techniques, Malliavin calculus, approximation by Riemann sums. We will describe these methods and present the corresponding change of variable formulas. Some applications will be discussed.},
affiliation = {Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona (Spain).},
author = {Nualart, David},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {stochastic integrals; Malliavin calculus; change of variable formulas},
language = {eng},
number = {1},
pages = {63-78},
publisher = {Université Paul Sabatier, Toulouse},
title = {Stochastic calculus with respect to fractional Brownian motion},
url = {http://eudml.org/doc/10039},
volume = {15},
year = {2006},
}
TY - JOUR
AU - Nualart, David
TI - Stochastic calculus with respect to fractional Brownian motion
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 1
SP - 63
EP - 78
AB - Fractional Brownian motion (fBm) is a centered self-similar Gaussian process with stationary increments, which depends on a parameter $H\in (0,1)$ called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case $H=1/2$, the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô calculus cannot be used. Different approaches have been introduced to construct stochastic integrals with respect to fBm: pathwise techniques, Malliavin calculus, approximation by Riemann sums. We will describe these methods and present the corresponding change of variable formulas. Some applications will be discussed.
LA - eng
KW - stochastic integrals; Malliavin calculus; change of variable formulas
UR - http://eudml.org/doc/10039
ER -
References
top- E. Alòs, J. A. León, D. Nualart, Stratonovich stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 1/2, Taiwanesse Journal of Mathematics 5 (2001), 609-632 Zbl0989.60054MR1849782
- E. Alòs, O. Mazet, D. Nualart, Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than , Stoch. Proc. Appl. 86 (1999), 121-139 Zbl1028.60047MR1741199
- E. Alòs, O. Mazet, D. Nualart, Stochastic calculus with respect to Gaussian processes, Annals of Probability 29 (2001), 766-801 Zbl1015.60047MR1849177
- E. Alòs, D. Nualart, Stochastic integration with respect to the fractional Brownian motion, Stochastics and Stochastics Reports 75 (2003), 129-152 Zbl1028.60048MR1978896
- S. Berman, Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J. 23 (1973), 69-94 Zbl0264.60024MR317397
- P. Carmona, L. Coutin, Stochastic integration with respect to fractional Brownian motion, Ann. Institut Henri Poincaré 39 (2003), 27-68 Zbl1016.60043MR1959841
- Z. Ciesielski, G. Kerkyacharian, B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, Studia Math. 107 (1993), 171-204 Zbl0809.60004MR1244574
- P. Cheridito, Mixed fractional Brownian motion, Bernoulli 7 (2001), 913-934 Zbl1005.60053MR1873835
- P. Cheridito, D. Nualart, Stochastic integral of divergence type with respect to the fractional Brownian motion with Hurst parameter , Ann. Institut Henri Poincaré 41 (2005), 1049-1081 Zbl1083.60027MR2172209
- A. Chorin, Vorticity and Turbulence, (1994), Springer-Verlag Zbl0795.76002MR1281384
- L. Coutin, D. Nualart, C. A. Tudor, Tanaka formula for the fractional Brownian motion, Stochastic Processes Appl. 94 (2001), 301-315 Zbl1053.60055MR1840834
- L. Coutin, Z. Qian, Stochastic analysis, rough paths analysis and fractional Brownian motions, Probab. Theory Rel. Fields 122 (2002), 108-140 Zbl1047.60029MR1883719
- L. Decreusefond, A. S. Üstünel, Stochastic analysis of the fractional Brownian motion, Potential Analysis 10 (1998), 177-214 Zbl0924.60034MR1677455
- N. Eisenbaum, C. A. Tudor, On squared fractional Brownian motions, Lecture Notes in Math. 1857 (2005), 282-289 Zbl1071.60023MR2126980
- F. Flandoli, On a probabilistic description of small scale structures in 3D fluids, Ann. Inst. Henri Poincaré 38 (2002), 207-228 Zbl1017.76074MR1899111
- F. Flandoli, M. Gubinelli, The Gibbs ensemble of a vortex filament, Probab. Theory Relat. Fields 122 (2001), 317-340 Zbl0992.60058MR1892850
- J. Guerra, D. Nualart, The -variation of the divergence integral with respect to the fractional Brownian motion for and fractional Bessel processes, Stoch. Proc. Applications 115 (2005), 289-289 Zbl1075.60056MR2105371
- Y. Hu, Integral transformations and anticipative calculus for fractional Brownian motions, Mem. Amer. Math. Soc. 175 (2005) Zbl1072.60044MR2130224
- Y. Hu, D. Nualart, Some Processes Associated with Fractional Bessel Processes, J. Theoretical Probability 18 (2005), 377-397 Zbl1074.60050MR2137449
- Y. Hu, B. Øksendal, Fractional white noise calculus and applications to finance, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), 1-32 Zbl1045.60072MR1976868
- A. N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum., C. R. (Doklady) Acad. URSS (N.S.) 26 (1940), 115-118 Zbl0022.36001MR3441
- T. Lyons, Differential equations driven by rough signals (I): An extension of an inequality of L. C. Young, Mathematical Research Letters 1 (1994), 451-464 Zbl0835.34004MR1302388
- T. Lyons, Z. Qian, System control and rough paths, (2002), Oxford University Press, Oxford Zbl1029.93001MR2036784
- B. B. Mandelbrot, J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Review 10 (1968), 422-437 Zbl0179.47801MR242239
- A. Millet, M. Sanz-Solé, Large deviations for rough paths of the fractional Brownian motion Zbl1087.60035
- Y. Nourdin, Calcul stochastique généralisé et applications au mouvement brownien fractionnaire; Estimation non-paramétrique de la volatilité et test d’adéquation, (2004)
- D. Nualart, E. Pardoux, Stochastic calculus with anticipating integrands, Prob. Th. Rel. Fields 78 (1988), 535-581 Zbl0629.60061MR950346
- D. Nualart, A. Rascanu, Differential equations driven by fractional Brownian motion, Collectanea Mathematica 53 (2002), 55-81 Zbl1018.60057MR1893308
- D. Nualart, C. Rovira, S. Tindel, Probabilistic models for vortex filaments based on fractional Brownian motion, Annals of Probability 31 (2003), 1862-1899 Zbl1047.76013MR2016603
- V. Pipiras, M. S. Taqqu, Integration questions related to fractional Brownian motion, Probab. Theory Rel. Fields 118 (2000), 121-291 Zbl0970.60058MR1790083
- V. Pipiras, M. S. Taqqu, Are classes of deterministic integrands for fractional Brownian motion on a interval complete?, Bernoulli 7 (2001), 873-897 Zbl1003.60055MR1873833
- L. C. G. Rogers, Arbitrage with fractional Brownian motion, Math. Finance 7 (1997), 95-105 Zbl0884.90045MR1434408
- F. Russo, P. Vallois, Forward, backward and symmetric stochastic integration, Probab. Theory Rel. Fields 97 (1993), 403-421 Zbl0792.60046MR1245252
- A. V. Skorohod, On a generalization of a stochastic integral, Theory Probab. Appl. 20 (1975), 219-233 Zbl0333.60060MR391258
- H. J. Sussmann, On the gap between deterministic and stochastic ordinary differential equations, Ann. Probability 6 (1978), 19-41 Zbl0391.60056MR461664
- L. C. Young, An inequality of the Hölder type connected with Stieltjes integration, Acta Math. 67 (1936), 251-282 Zbl0016.10404
- M. Zähle, Integration with respect to fractal functions and stochastic calculus. I., Probab. Theory Related Fields 111 (1998), 333-374 Zbl0918.60037MR1640795
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.