Displaying similar documents to “Invariance principles in Hölder spaces.”

Central limit theorem for sampled sums of dependent random variables

Nadine Guillotin-Plantard, Clémentine Prieur (2010)

ESAIM: Probability and Statistics

Similarity:

We prove a central limit theorem for linear triangular arrays under weak dependence conditions. Our result is then applied to dependent random variables sampled by a -valued transient random walk. This extends the results obtained by [N. Guillotin-Plantard and D. Schneider, (2003) 477–497]. An application to parametric estimation by random sampling is also provided.

An invariance principle in L 2 [ 0 , 1 ] for non stationary ϕ -mixing sequences

Paulo Eduardo Oliveira, Charles Suquet (1995)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Invariance principle in L 2 ( 0 , 1 ) is studied using signed random measures. This approach to the problem uses an explicit isometry between L 2 ( 0 , 1 ) and a reproducing kernel Hilbert space giving a very convenient setting for the study of compactness and convergence of the sequence of Donsker functions. As an application, we prove a L 2 ( 0 , 1 ) version of the invariance principle in the case of ϕ -mixing random variables. Our result is not available in the D ( 0 , 1 ) -setting.