The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Vertical cohomologies and their application to completely integrable Hamiltonian systems.”

Continuous transformation groups on spaces

K. Spallek (1991)

Annales Polonici Mathematici

Similarity:

A differentiable group is a group in the category of (reduced and nonreduced) differentiable spaces. Special cases are the rationals ℚ, Lie groups, formal groups over ℝ or ℂ; in general there is some mixture of those types, the general structure, however, is not yet completely determined. The following gives as a corollary a first essential answer. It is shown, more generally,that a locally compact topological transformation group, operating effectively on a differentiable space X (which...

On foliations in Sikorski differential spaces with Brouwerian leaves

Włodzimierz Waliszewski (1991)

Annales Polonici Mathematici

Similarity:

The class of locally connected and locally homeomorphically homogeneous topological spaces such that every one-to-one continuous mapping of an open subspace into the space is open has been considered. For a foliation F [3] on a Sikorski differential space M with leaves having the above properties it is proved that for some open sets U in M covering the set of all points of M the connected components of U ∩ L̲ in the topology of M coincide with the connected components in the topology...

Normally flat semiparallel submanifolds in space forms as immersed semisymmetric Riemannian manifolds

Ülo Lumiste (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

By means of the bundle of orthonormal frames adapted to the submanifold as in the title an explicit exposition is given for these submanifolds. Two theorems give a full description of the semisymmetric Riemannian manifolds which can be immersed as such submanifolds. A conjecture is verified for this case that among manifolds of conullity two only the planar type (in the sense of Kowalski) is possible.