### Invariant probabilities for Feller-Markov chains.

Hernández-Lerma, Onésimo, Lasserre, Jean B. (1995)

Journal of Applied Mathematics and Stochastic Analysis

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Hernández-Lerma, Onésimo, Lasserre, Jean B. (1995)

Journal of Applied Mathematics and Stochastic Analysis

Similarity:

Onésimo Hernández-Lerma, Jean Lasserre (2000)

Applicationes Mathematicae

Similarity:

We consider a Markov chain on a locally compact separable metric space $X$ and with a unique invariant probability. We show that such a chain can be classified into two categories according to the type of convergence of the expected occupation measures. Several properties in each category are investigated.

Michael Lin (1976)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Jean-Gabriel Attali (2004)

ESAIM: Probability and Statistics

Similarity:

We provide an extension of topological methods applied to a certain class of Non Feller Models which we call Quasi-Feller. We give conditions to ensure the existence of a stationary distribution. Finally, we strengthen the conditions to obtain a positive Harris recurrence, which in turn implies the existence of a strong law of large numbers.

Carlsson, Niclas (2005)

Electronic Communications in Probability [electronic only]

Similarity:

Jean-Gabriel Attali (2010)

ESAIM: Probability and Statistics

Similarity:

E. Nummelin (1978)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Lindvall, Torgny (1999)

Electronic Communications in Probability [electronic only]

Similarity:

Myjak, Józef, Szarek, Tomasz (2003)

Abstract and Applied Analysis

Similarity:

S. Horowitz (1974)

Annales de l'I.H.P. Probabilités et statistiques

Similarity: