The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Integer points unusually close to elliptic curves.”

Lang-Trotter and Sato-Tate distributions in single and double parametric families of elliptic curves

Min Sha, Igor E. Shparlinski (2015)

Acta Arithmetica

Similarity:

We obtain new results concerning the Lang-Trotter conjectures on Frobenius traces and Frobenius fields over single and double parametric families of elliptic curves. We also obtain similar results with respect to the Sato-Tate conjecture. In particular, we improve a result of A. C. Cojocaru and the second author (2008) towards the Lang-Trotter conjecture on average for polynomially parameterised families of elliptic curves when the parameter runs through a set of rational numbers of...

Rank of elliptic curves associated to Brahmagupta quadrilaterals

Farzali Izadi, Foad Khoshnam, Arman Shamsi Zargar (2016)

Colloquium Mathematicae

Similarity:

We construct a family of elliptic curves with six parameters, arising from a system of Diophantine equations, whose rank is at least five. To do so, we use the Brahmagupta formula for the area of cyclic quadrilaterals (p³,q³,r³,s³) not necessarily representing genuine geometric objects. It turns out that, as parameters of the curves, the integers p,q,r,s along with the extra integers u,v satisfy u⁶+v⁶+p⁶+q⁶ = 2(r⁶+s⁶), uv = pq, which, by previous work, has infinitely many integer solutions. ...

A diophantine system.

Bremner, Andrew (1986)

International Journal of Mathematics and Mathematical Sciences

Similarity: