Solving elliptic diophantine equations: the general cubic case

Roelof J. Stroeker; Benjamin M. M. de Weger

Acta Arithmetica (1999)

  • Volume: 87, Issue: 4, page 339-365
  • ISSN: 0065-1036

How to cite

top

Roelof J. Stroeker, and Benjamin M. M. de Weger. "Solving elliptic diophantine equations: the general cubic case." Acta Arithmetica 87.4 (1999): 339-365. <http://eudml.org/doc/207225>.

@article{RoelofJ1999,
author = {Roelof J. Stroeker, Benjamin M. M. de Weger},
journal = {Acta Arithmetica},
keywords = {cubic diophantine equation; elliptic curve; elliptic logarithm; LLL-reduction; binary Krawtchouk polynomial; linear form in elliptic logarithms; elliptic diophantine equation; elliptic logarithm method; integral points; cubic elliptic equation},
language = {eng},
number = {4},
pages = {339-365},
title = {Solving elliptic diophantine equations: the general cubic case},
url = {http://eudml.org/doc/207225},
volume = {87},
year = {1999},
}

TY - JOUR
AU - Roelof J. Stroeker
AU - Benjamin M. M. de Weger
TI - Solving elliptic diophantine equations: the general cubic case
JO - Acta Arithmetica
PY - 1999
VL - 87
IS - 4
SP - 339
EP - 365
LA - eng
KW - cubic diophantine equation; elliptic curve; elliptic logarithm; LLL-reduction; binary Krawtchouk polynomial; linear form in elliptic logarithms; elliptic diophantine equation; elliptic logarithm method; integral points; cubic elliptic equation
UR - http://eudml.org/doc/207225
ER -

References

top
  1. [BC70] A. Baker and J. Coates, Integer points on curves of genus 1, Proc. Cambridge Philos. Soc. 67 (1970), 595-602. Zbl0194.07601
  2. [BH96] Yu. Bilu and G. Hanrot, Solving Thue equations of high degree, J. Number Theory 60 (1996), 373-392. Zbl0867.11017
  3. [BH98] Yu. Bilu and G. Hanrot, Solving superelliptic diophantine equations by Baker's method, Compositio Math. 112 (1998), 273-312. Zbl0915.11065
  4. [BST97] A. Bremner, R. J. Stroeker and N. Tzanakis, On sums of consecutive squares, J. Number Theory 62 (1997), 39-70. Zbl0876.11024
  5. [Co97] I. Connell, Elliptic Curve Handbook, available from the ftp site of McGill University in the directory math.mcgill.ca/pub/ECH1. From the same site the Apecs package can be downloaded. 
  6. [Cr92] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, 1992. The programs mrank, mwrank, findinf may be downloaded from John Cremona's ftp site euclid.ex.ac.uk/pub/cremona. 
  7. [D95] S. David, Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. France (N.S.) 62 (1995), iv + 143 pp. 
  8. [GPZ94] J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on elliptic curves, Acta Arith. 68 (1994), 171-192. Zbl0816.11019
  9. [GPZ97] J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on Mordell's elliptic curves, Collect. Math. 48 (1997), no. 1-2, 115-136. Zbl0865.11084
  10. [HS93] L. Habsieger and D. Stanton, More zeros of Krawtchouk polynomials, Graphs Combin. 9 (1993), 163-172. Zbl0805.33008
  11. [HP98] L. Hajdu and Á. Pintér, Combinatorial diophantine equations, preprint. Zbl0960.11018
  12. [H97] G. Hanrot, Résolution effective d'équations diophantiennes: algorithmes et applications, Thèse, Université Bordeaux 1, 1997. 
  13. [KL96] I. Krasikov and S. Litsyn, On integral zeros of Krawtchouk polynomials, J. Combin. Theory Ser. A 74 (1996), 71-99. Zbl0853.33008
  14. [N28] T. Nagel, Sur les propriétés des cubiques planes du premier genre, Acta Math. 52 (1928), 93-126. Zbl54.0403.03
  15. [Sch92] W. M. Schmidt, Integer points on curves of genus 1, Compositio Math. 81 (1992), 33-59. Zbl0747.11026
  16. [Sie29] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. 1929, 1-41. 
  17. [Sik95] S. Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), 1501-1538. Zbl0852.11028
  18. [Sil90] J. H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), 723-743. Zbl0729.14026
  19. [Sm94] N. P. Smart, S-integral points on elliptic curves, Math. Proc. Cambridge Philos. Soc. 116 (1994), 391-399. Zbl0817.11031
  20. [St95] R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Math. 97 (1995), 295-307. Zbl0837.11012
  21. [ST94] R. J. Stroeker and N. Tzanakis, Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith. 67 (1994), 177-196. Zbl0805.11026
  22. [ST97] R. J. Stroeker and N. Tzanakis, On the elliptic logarithm method for elliptic diophantine equations: Reflections and an improvement, Experiment. Math., to appear. Zbl0979.11060
  23. [SdW97] R. J. Stroeker and B. M. M. de Weger, Elliptic binomial diophantine equations, Math. Comp., to appear. Zbl0920.11014
  24. [SdW98] R. J. Stroeker and B. M. M. de Weger, On integral zeroes of binary Krawtchouk polynomials, Proceedings NMC 1998 (Dutch Math. Congress, Twente Un.), to appear. Zbl1069.33010
  25. [Tz96] N. Tzanakis, Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations, Acta Arith. 75 (1996), 165-190. 
  26. [TdW89] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132. Zbl0657.10014
  27. [dW89] B. M. M. de Weger, Algorithms for Diophantine equations, CWI Tract 65, Stichting Mathematisch Centrum, Amsterdam, 1989. 
  28. [Z87] D. Zagier, Large integral points on elliptic curves, Math. Comp.48 (1987), 425-436. Zbl0611.10008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.