The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The topological degree method for equations of the Navier-Stokes type.”

On optimal decay rates for weak solutions to the Navier-Stokes equations in R n

Tetsuro Miyakawa, Maria Elena Schonbek (2001)

Mathematica Bohemica

Similarity:

This paper is concerned with optimal lower bounds of decay rates for solutions to the Navier-Stokes equations in n . Necessary and sufficient conditions are given such that the corresponding Navier-Stokes solutions are shown to satisfy the algebraic bound u ( t ) ( t + 1 ) - n + 4 2 .

Conditions implying regularity of the three dimensional Navier-Stokes equation

Stephen Montgomery-Smith (2005)

Applications of Mathematics

Similarity:

We obtain logarithmic improvements for conditions for regularity of the Navier-Stokes equation, similar to those of Prodi-Serrin or Beale-Kato-Majda. Some of the proofs make use of a stochastic approach involving Feynman-Kac-like inequalities. As part of our methods, we give a different approach to a priori estimates of Foiaş, Guillopé and Temam.

Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems

Philippe Angot, Vít Dolejší, Miloslav Feistauer, Jiří Felcman (1998)

Applications of Mathematics

Similarity:

We present the convergence analysis of an efficient numerical method for the solution of an initial-boundary value problem for a scalar nonlinear conservation law equation with a diffusion term. Nonlinear convective terms are approximated with the aid of a monotone finite volume scheme considered over the finite volume barycentric mesh, whereas the diffusion term is discretized by piecewise linear nonconforming triangular finite elements. Under the assumption that the triangulations...