Conditions implying regularity of the three dimensional Navier-Stokes equation

Stephen Montgomery-Smith

Applications of Mathematics (2005)

  • Volume: 50, Issue: 5, page 451-464
  • ISSN: 0862-7940

Abstract

top
We obtain logarithmic improvements for conditions for regularity of the Navier-Stokes equation, similar to those of Prodi-Serrin or Beale-Kato-Majda. Some of the proofs make use of a stochastic approach involving Feynman-Kac-like inequalities. As part of our methods, we give a different approach to a priori estimates of Foiaş, Guillopé and Temam.

How to cite

top

Montgomery-Smith, Stephen. "Conditions implying regularity of the three dimensional Navier-Stokes equation." Applications of Mathematics 50.5 (2005): 451-464. <http://eudml.org/doc/33232>.

@article{Montgomery2005,
abstract = {We obtain logarithmic improvements for conditions for regularity of the Navier-Stokes equation, similar to those of Prodi-Serrin or Beale-Kato-Majda. Some of the proofs make use of a stochastic approach involving Feynman-Kac-like inequalities. As part of our methods, we give a different approach to a priori estimates of Foiaş, Guillopé and Temam.},
author = {Montgomery-Smith, Stephen},
journal = {Applications of Mathematics},
keywords = {Navier-Stokes equation; vorticity; Prodi-Serrin condition; Beale-Kato-Majda condition; Orlicz norm; stochastic method; Navier-Stokes equation; vorticity; Prodi-Serrin condition; Beale-Kato-Majda condition; Orlicz norm; stochastic method},
language = {eng},
number = {5},
pages = {451-464},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Conditions implying regularity of the three dimensional Navier-Stokes equation},
url = {http://eudml.org/doc/33232},
volume = {50},
year = {2005},
}

TY - JOUR
AU - Montgomery-Smith, Stephen
TI - Conditions implying regularity of the three dimensional Navier-Stokes equation
JO - Applications of Mathematics
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 5
SP - 451
EP - 464
AB - We obtain logarithmic improvements for conditions for regularity of the Navier-Stokes equation, similar to those of Prodi-Serrin or Beale-Kato-Majda. Some of the proofs make use of a stochastic approach involving Feynman-Kac-like inequalities. As part of our methods, we give a different approach to a priori estimates of Foiaş, Guillopé and Temam.
LA - eng
KW - Navier-Stokes equation; vorticity; Prodi-Serrin condition; Beale-Kato-Majda condition; Orlicz norm; stochastic method; Navier-Stokes equation; vorticity; Prodi-Serrin condition; Beale-Kato-Majda condition; Orlicz norm; stochastic method
UR - http://eudml.org/doc/33232
ER -

References

top
  1. 10.1007/BF01212349, Comm. Math. Phys. 94 (1984), 61–66. (1984) MR0763762DOI10.1007/BF01212349
  2. A probabilistic representation for the vorticity of a 3D  viscous fluid and for general systems of parabolic equations, Preprint, http://arxiv.org/abs/math/0306075. 
  3. Wavelets, paraproducts and Navier-Stokes, Diderot Editeur, Paris, 1995. (French) (1995) Zbl1049.35517MR1688096
  4. Vorticity and Turbulence. Appl. Math. Sci., Vol.  103, Springer-Verlag, New York, 1994. (1994) MR1281384
  5. 10.1007/s002200000349, Commun. Math. Phys. 216 (2001), 663–686. (2001) Zbl0988.76020MR1815721DOI10.1007/s002200000349
  6. Navier-Stokes Equations. Chicago Lectures in Mathematics, University of Chicago Press, Chicago, 1988. (1988) MR0972259
  7. Applied Analysis of the Navier-Stokes Equations. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1995. (1995) MR1325465
  8. On L 3 , -solutions to the Navier-Stokes equations and backward uniqueness, http://www.ima.umn.edu/preprints/dec2002/dec2002.html. MR1992563
  9. 10.1080/03605308108820180, Commun. Partial Differ. Equations 6 (1981), 329–359. (1981) MR0607552DOI10.1080/03605308108820180
  10. 10.1006/jfan.1997.3167, J.  Funct. Anal. 152 (1998), 447–466. (1998) MR1607936DOI10.1006/jfan.1997.3167
  11. Brownian Motion and Stochastic Calculus, second edition. Graduate Texts in Mathematics Vol.  113, Springer-Verlag, New York, 1991. (1991) MR1121940
  12. 10.1007/s002090000130, Math.  Z. 235 (2000), 173–194. (2000) MR1785078DOI10.1007/s002090000130
  13. Convex Functions and Orlicz Spaces. Translated from the first Russian edition, P.  Noordhoff, Groningen, 1961. (1961) MR0126722
  14. Recent Developments in the Navier-Stokes Problem, Chapman and Hall/CRC, Boca Raton, 2002. (2002) Zbl1034.35093MR1938147
  15. 10.1016/j.crma.2004.01.015, C. R. Math. Acad. Sci. Paris 338 (2004), 443–446. (French) (2004) MR2057722DOI10.1016/j.crma.2004.01.015
  16. A counterexample to the smoothness of the solution to an equation arising in fluid mechanics, Comment. Math. Univ. Carolin. 43 (2002), 61–75. (2002) MR1903307
  17. 10.1007/BF02410664, Ann. Mat. Pura Appl. 48 (1959), 173–182. (Italian) (1959) Zbl0148.08202MR0126088DOI10.1007/BF02410664
  18. Turbulence and Hausdorff Dimension, Turbulence and Navier-Stokes Equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975). Lect. Notes Math. Vol.  565, Springer-Verlag, Berlin, 1976, pp. 174–183. (1976) Zbl0394.76029MR0452123
  19. 10.1007/BF00253344, Arch. Ration. Mech. Anal. 9 (1962), 187–195. (1962) Zbl0106.18302MR0136885DOI10.1007/BF00253344
  20. Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes, Math.  Z. 184 (1983), 359–375. (1983) Zbl0506.35084MR0716283
  21. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, second edition. Applied Mathematical Sciences Vol.  68, Springer-Verlag, New York, 1997. (1997) MR1441312

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.