On full cover property of ordered fields
Tibor Šalát (1994)
Mathematica Slovaca
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Tibor Šalát (1994)
Mathematica Slovaca
Similarity:
D. W. Dubois, A. Bukowski (1979)
Revista Matemática Hispanoamericana
Similarity:
Fernando Fernández Rodríguez, Agustín Llerena Achutegui (1991)
Extracta Mathematicae
Similarity:
We say that a field K has the Extension Property if every automorphism of K(X) extends to an automorphism of K. J.M. Gamboa and T. Recio [2] have introduced this concept, naive in appearance, because of its crucial role in the study of homogeneity conditions in spaces of orderings of functions fields. Gamboa [1] has studied several classes of fields with this property: Algebraic extensions of the field Q of rational numbers; euclidean, algebraically closed and pythagorean fields; fields...
Yoshio Tanaka (2012)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
An ordered field is a field which has a linear order and the order topology by this order. For a subfield of an ordered field, we give characterizations for to be Dedekind-complete or Archimedean in terms of the order topology and the subspace topology on .
Masayoshi Nagata (1974-1975)
Séminaire Dubreil. Algèbre et théorie des nombres
Similarity:
Taras Banakh, Yaroslav Kholyavka, Oles Potyatynyk, Michał Machura, Katarzyna Kuhlmann (2014)
Open Mathematics
Similarity:
We prove that for every n ∈ ℕ the space M(K(x 1, …, x n) of ℝ-places of the field K(x 1, …, x n) of rational functions of n variables with coefficients in a totally Archimedean field K has the topological covering dimension dimM(K(x 1, …, x n)) ≤ n. For n = 2 the space M(K(x 1, x 2)) has covering and integral dimensions dimM(K(x 1, x 2)) = dimℤ M(K(x 1, x 2)) = 2 and the cohomological dimension dimG M(K(x 1, x 2)) = 1 for any Abelian 2-divisible coefficient group G.