SUR models applied to an environmental situation with missing data and censored values.
Sparks, Ross (2004)
Journal of Applied Mathematics and Decision Sciences
Similarity:
Sparks, Ross (2004)
Journal of Applied Mathematics and Decision Sciences
Similarity:
Brenton R. Clarke (2000)
Discussiones Mathematicae Probability and Statistics
Similarity:
In small to moderate sample sizes it is important to make use of all the data when there are no outliers, for reasons of efficiency. It is equally important to guard against the possibility that there may be single or multiple outliers which can have disastrous effects on normal theory least squares estimation and inference. The purpose of this paper is to describe and illustrate the use of an adaptive regression estimation algorithm which can be used to highlight outliers, either single...
Sira Allende, Carlos Bouza, Isidro Romero (1995)
Qüestiió
Similarity:
Robust estimation of the multiple regression is modeled by using a convex combination of Least Squares and Least Absolute Value criterions. A Bicriterion Parametric algorithm is developed for computing the corresponding estimates. The proposed procedure should be specially useful when outliers are expected. Its behavior is analyzed using some examples.
Silvie Bělašková, Eva Fišerová, Sylvia Krupičková (2013)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Similarity:
In most clinical studies, patients are observed for extended time periods to evaluate influences in treatment such as drug treatment, approaches to surgery, etc. The primary event in these studies is death, relapse, adverse drug reaction, or development of a new disease. The follow-up time may range from few weeks to many years. Although these studies are long term, the number of observed events is small. Longitudinal studies have increased the importance of statistical methods for time-to...
Tadeusz Bednarski (2016)
Discussiones Mathematicae Probability and Statistics
Similarity:
Computationally attractive Fisher consistent robust estimation methods based on adaptive explanatory variables trimming are proposed for the logistic regression model. Results of a Monte Carlo experiment and a real data analysis show its good behavior for moderate sample sizes. The method is applicable when some distributional information about explanatory variables is available.
Brenton R. Clarke, Antony G. Monaco (2004)
Discussiones Mathematicae Probability and Statistics
Similarity:
In analysing a well known data set from the literature which can be thought of as a two-way layout it transpires that a robust adaptive regression approach for identifying outliers fails to be sensitive enough to detect the possible interchange of two observations. On the other hand if one takes the classical approach of diagnostic checking one may also stop too early and be satisfied with a model that falls short of a more detailed analysis that takes account of heteroscedasticity in...
Philip J. Brown (1980)
Trabajos de Estadística e Investigación Operativa
Similarity:
Important features of multivariate linear regression are emphasised and a selection of prior distributions discussed. Priors used by Brown and Zidek (1978) lead them to a class of 'empirical' Bayes shrinkage estimates. The strength of shrinkage is examined with respect to an election forecasting example where observations obtain one after another.
Sandra Donevska, Eva Fišerová, Karel Hron (2011)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Similarity:
Orthogonal regression, also known as the total least squares method, regression with errors-in variables or as a calibration problem, analyzes linear relationship between variables. Comparing to the standard regression, both dependent and explanatory variables account for measurement errors. Through this paper we shortly discuss the orthogonal least squares, the least squares and the maximum likelihood methods for estimation of the orthogonal regression line. We also show that all mentioned...