Upper and lower bounds for .
Xu, Xiaodong, Luo, Haipeng, Shao, Zehui (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Xu, Xiaodong, Luo, Haipeng, Shao, Zehui (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Fischer, Eldar (1999)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Nedialkov, Evgeni, Nenov, Nedyalko (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Allen, Peter (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Nenov, Nedyalko (2002)
Serdica Mathematical Journal
Similarity:
Let a1 , . . . , ar, be positive integers, i=1 ... r, m = ∑(ai − 1) + 1 and p = max{a1 , . . . , ar }. For a graph G the symbol G → (a1 , . . . , ar ) means that in every r-coloring of the vertices of G there exists a monochromatic ai -clique of color i for some i ∈ {1, . . . , r}. In this paper we consider the vertex Folkman numbers F (a1 , . . . , ar ; m − 1) = min |V (G)| : G → (a1 , . . . , ar ) and Km−1 ⊂ G} We prove that F (a1 , . . . , ar ; m − 1) = m + 6, if p = 3 and m ≧ 6...
Yousef Alavi, Don R. Lick, Song Lin Tian (1989)
Mathematica Slovaca
Similarity:
Bohdan Zelinka (1983)
Czechoslovak Mathematical Journal
Similarity: