Automorphism groups of orientable elliptic-hyperelliptic Klein surfaces.
Estrada, Beatriz (2000)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Estrada, Beatriz (2000)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Grzegorz Gromadzki (1990)
Disertaciones Matemáticas del Seminario de Matemáticas Fundamentales
Similarity:
Adnan Melekoglu (2000)
Revista Matemática Complutense
Similarity:
Let X be a compact Riemmann surface of genus g > 1. A symmetry T of X is an anticonformal involution. The fixed point set of T is a disjoint union of simple closed curves, each of which is called a mirror of T. If T fixes g +1 mirrors then it is called an M-symmetry and X is called an M-surface. If X admits an automorphism of order g + 1 which cyclically permutes the mirrors of T then we shall call X an M-surface with the M-property. In this paper we investigate those M-surfaces...
Grzegorz Gromadzki (2000)
Revista Matemática Iberoamericana
Similarity:
We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.
Ewa Tyszkowska (2005)
Colloquium Mathematicae
Similarity:
A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if X admits a conformal involution ϱ, called a p-hyperelliptic involution, for which X/ϱ is an orbifold of genus p. If in addition X admits a q-hypereliptic involution then we say that X is pq-hyperelliptic. We give a necessary and sufficient condition on p,q and g for existence of a pq-hyperelliptic Riemann surface of genus g. Moreover we give some conditions under which p- and q-hyperelliptic involutions of...
Costa, Antonio F., Izquierdo, Milagros (2002)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
David Singerman (1997)
Mathematica Slovaca
Similarity:
Beata Mockiewicz (2002)
RACSAM
Similarity:
Sea X una superficie de Klein compacta con borde de gen algebraico p ≥ 2. Se sabe que si G es un grupo de automorfismos de X entonces |G| ≤ 12(p- 1). Se dice que G es un grupo grande de gen p si |G| > 4(p -1). En el presente artículo se halla una familia de enteros p para los que el único grupo grande de gen p son los grupos diédricos. Esto significa que, en términos del gen real introducido por C. L. May, para tales valores de p no existen grupos grandes de gen real p. ...
M. Izquierdo (1999)
Disertaciones Matemáticas del Seminario de Matemáticas Fundamentales
Similarity:
Bujalance, E., Costa, A.F., Gamboa, J.M., Riera, G. (2000)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity: