Noether (and Gauge) transformations for higher order singular lagrangians.
Xavier Gràcia, Josep M. Pons (1996)
Extracta Mathematicae
Similarity:
Xavier Gràcia, Josep M. Pons (1996)
Extracta Mathematicae
Similarity:
Xavier Gràcia, Josep M. Pons (1994)
Annales de l'I.H.P. Physique théorique
Similarity:
Charles-Michel Marle (2003)
Banach Center Publications
Similarity:
Udrişte, Constantin, Teleman, Ana-Maria (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Ezequiel Maderna (2002)
Bulletin de la Société Mathématique de France
Similarity:
We show that every global viscosity solution of the Hamilton-Jacobi equation associated with a convex and superlinear Hamiltonian on the cotangent bundle of a closed manifold is necessarily invariant under the identity component of the group of symmetries of the Hamiltonian (we prove that this group is a compact Lie group). In particular, every Lagrangian section invariant under the Hamiltonian flow is also invariant under this group.
Jean-David Benamou, Philippe Hoch (2002)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
We describe both the classical lagrangian and the Eulerian methods for first order Hamilton–Jacobi equations of geometric optic type. We then explain the basic structure of the software and how new solvers/models can be added to it. A selection of numerical examples are presented.