The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A note on computing the generalized inverse A T , S ( 2 ) of a matrix A .”

Self-correcting iterative methods for computing 2 -inverses

Stanimirović, Predrag S. (2003)

Archivum Mathematicum

Similarity:

In this paper we construct a few iterative processes for computing { 2 } -inverses of a linear bounded operator. These algorithms are extensions of the corresponding algorithms introduced in [11] and a method from [8]. A few error estimates are derived.

Convergence of Rump's method for computing the Moore-Penrose inverse

Yunkun Chen, Xinghua Shi, Yi Min Wei (2016)

Czechoslovak Mathematical Journal

Similarity:

We extend Rump's verified method (S. Oishi, K. Tanabe, T. Ogita, S. M. Rump (2007)) for computing the inverse of extremely ill-conditioned square matrices to computing the Moore-Penrose inverse of extremely ill-conditioned rectangular matrices with full column (row) rank. We establish the convergence of our numerical verified method for computing the Moore-Penrose inverse. We also discuss the rank-deficient case and test some ill-conditioned examples. We provide our Matlab codes for...

On the generalized Drazin inverse and generalized resolvent

Dragan S. Djordjević, Stanimirović, Predrag S. (2001)

Czechoslovak Mathematical Journal

Similarity:

We investigate the generalized Drazin inverse and the generalized resolvent in Banach algebras. The Laurent expansion of the generalized resolvent in Banach algebras is introduced. The Drazin index of a Banach algebra element is characterized in terms of the existence of a particularly chosen limit process. As an application, the computing of the Moore-Penrose inverse in C * -algebras is considered. We investigate the generalized Drazin inverse as an outer inverse with prescribed range...