Convergence of Rump's method for computing the Moore-Penrose inverse
Yunkun Chen; Xinghua Shi; Yi Min Wei
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 3, page 859-879
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Yunkun, Shi, Xinghua, and Wei, Yi Min. "Convergence of Rump's method for computing the Moore-Penrose inverse." Czechoslovak Mathematical Journal 66.3 (2016): 859-879. <http://eudml.org/doc/286842>.
@article{Chen2016,
abstract = {We extend Rump's verified method (S. Oishi, K. Tanabe, T. Ogita, S. M. Rump (2007)) for computing the inverse of extremely ill-conditioned square matrices to computing the Moore-Penrose inverse of extremely ill-conditioned rectangular matrices with full column (row) rank. We establish the convergence of our numerical verified method for computing the Moore-Penrose inverse. We also discuss the rank-deficient case and test some ill-conditioned examples. We provide our Matlab codes for computing the Moore-Penrose inverse.},
author = {Chen, Yunkun, Shi, Xinghua, Wei, Yi Min},
journal = {Czechoslovak Mathematical Journal},
keywords = {Moore-Penrose inverse; condition number; ill-conditioned matrix},
language = {eng},
number = {3},
pages = {859-879},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence of Rump's method for computing the Moore-Penrose inverse},
url = {http://eudml.org/doc/286842},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Chen, Yunkun
AU - Shi, Xinghua
AU - Wei, Yi Min
TI - Convergence of Rump's method for computing the Moore-Penrose inverse
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 859
EP - 879
AB - We extend Rump's verified method (S. Oishi, K. Tanabe, T. Ogita, S. M. Rump (2007)) for computing the inverse of extremely ill-conditioned square matrices to computing the Moore-Penrose inverse of extremely ill-conditioned rectangular matrices with full column (row) rank. We establish the convergence of our numerical verified method for computing the Moore-Penrose inverse. We also discuss the rank-deficient case and test some ill-conditioned examples. We provide our Matlab codes for computing the Moore-Penrose inverse.
LA - eng
KW - Moore-Penrose inverse; condition number; ill-conditioned matrix
UR - http://eudml.org/doc/286842
ER -
References
top- Ben-Israel, A., Greville, T. N. E., Generalized Inverses. Theory and Applications, Springer, New York (2003). (2003) Zbl1026.15004MR1987382
- Björck, Å., Numerical Methods for Least Squares Problems, Society for Industrial and Applied Mathematics (SIAM) Philadelphia (1996). (1996) Zbl0847.65023MR1386889
- Campbell, S. L., Meyer, C. D., Generalized Inverses of Linear Transformations, Dover Publications, New York (1991). (1991) Zbl0732.15003MR1105324
- Castro-González, N., Ceballos, J., Dopico, F. M., Molera, J. M., 10.1137/12088642X, SIAM J. Matrix Anal. Appl. 34 (2013), 1112-1128. (2013) Zbl1296.65060MR3082494DOI10.1137/12088642X
- Chen, L., Krishnamurthy, E. V., Madeod, I., 10.1016/S0167-8191(06)80014-1, Parallel Comput. 20 (1994), 297-311. (1994) MR1267509DOI10.1016/S0167-8191(06)80014-1
- Courrieu, P., Fast computation of Moore-Penrose inverse matrices, Neural Information Processing 8 (2005), 25-29. (2005)
- Cucker, F., Diao, H., Wei, Y., 10.1090/S0025-5718-06-01913-2, Math. Comput. 76 (2007), 947-963. (2007) Zbl1115.15004MR2291844DOI10.1090/S0025-5718-06-01913-2
- Cucker, F., Diao, H., Wei, Y., 10.1002/nla.464, Numer. Linear Algebra Appl. 13 (2006), 71-84. (2006) Zbl1198.65084MR2194973DOI10.1002/nla.464
- Demmel, J., Gu, M., Eisenstat, S., Slapničar, I., Veselić, K., Drmač, Z., Computing the singular value decomposition with high relative accuracy, Linear Algebra Appl. 299 (1999), 21-80. (1999) Zbl0952.65032MR1723709
- Demmel, J. W., Hida, Y., Li, X. S., Riedy, E. J., 10.1145/1462173.1462177, ACM Trans. Math. Software 35 (2009), Art. 28, 32 pages. (2009) MR2738180DOI10.1145/1462173.1462177
- Demmel, J., Higham, N. J., 10.1137/0614001, SIAM J. Matrix Anal. Appl. 14 (1993), 1-14. (1993) MR1199540DOI10.1137/0614001
- Diao, H., Wei, Y., 10.1002/nla.540, Numer. Linear Algebra Appl. 14 (2007), 603-610. (2007) Zbl1199.65128MR2353687DOI10.1002/nla.540
- Diao, H., Wei, Y., Qiao, S., 10.1016/j.cam.2016.05.023, J. Comput. Appl. Math. 308 (2016), 276-300. (2016) Zbl1346.65015MR3523006DOI10.1016/j.cam.2016.05.023
- Dopico, F. M., Molera, J. M., 10.1093/imanum/drr023, IMA J. Numer. Anal. 32 (2012), 1096-1116. (2012) Zbl1251.65040MR2954742DOI10.1093/imanum/drr023
- Fiedler, M., 10.1016/S0024-3795(02)00510-4, Linear Algebra Appl. 362 (2003), 137-143. (2003) Zbl1022.15004MR1955460DOI10.1016/S0024-3795(02)00510-4
- Fiedler, M., Markham, T. L., A characterization of the Moore-Penrose inverse, Linear Algebra Appl. 179 (1993), 129-133. (1993) Zbl0764.15003MR1200147
- Golub, G. H., Loan, C. F. Van, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences Johns Hopkins University Press, Baltimore (2013). (2013) MR3024913
- Gulliksson, M., Wedin, P. Å., Wei, Y., 10.1023/A:1022319830134, BIT 40 (2000), 513-523. (2000) MR1780405DOI10.1023/A:1022319830134
- Jones, J., Karampetakis, N. P., Pugh, A. C., 10.1006/jsco.1997.0168, J. Symb. Comput. 25 (1998), 99-124. (1998) Zbl0894.68088MR1600622DOI10.1006/jsco.1997.0168
- Katsikis, V. N., Pappas, D., Fast computing of the Moore-Penrose inverse matrix, Electron. J. Linear Algebra (electronic only) 17 (2008), 637-650. (2008) Zbl1176.65048MR2460879
- Li, Z.-C., Huang, H.-T., Wei, Y., Cheng, A. H.-D., Effective Condition Number for Numerical Partial Differential Equations, Alpha Science International, Oxford (2014). (2014) MR3495915
- Li, Z., Xu, Q., Wei, Y., 10.1002/nla.838, Numer. Linear Algebra Appl. 20 (2013), 18-26. (2013) Zbl1289.65091MR3007236DOI10.1002/nla.838
- Ogita, T., Rump, S. M., Oishi, S., 10.1137/030601818, SIAM J. Sci. Comput. 26 (2005), 1955-1988. (2005) Zbl1084.65041MR2196584DOI10.1137/030601818
- Ohta, T., Ogita, T., Rump, S. M., Oishi, S., Numerical verification method for arbitrarily ill-conditioned linear systems, Transactions of the Japan Society for Industrial and Applied Mathematics 15 (2005), 269-287. (2005)
- Oishi, S., Rump, S. M., 10.1007/s002110100310, Numer. Math. 90 (2002), 755-773. (2002) Zbl0999.65015MR1888837DOI10.1007/s002110100310
- Oishi, S., Tanabe, K., Ogita, T., Rump, S. M., 10.1016/j.cam.2006.05.022, J. Comput. Appl. Math. 205 (2007), 533-544. (2007) Zbl1120.65040MR2324858DOI10.1016/j.cam.2006.05.022
- Rao, C. R., Mitra, S. K., Generalized Inverses of Matrices and Its Applications, Wiley Series in Probability and Mathematical Statistics Wiley & Sons, New York (1971). (1971) MR0338013
- Rump, S. M., 10.1137/110840248, SIAM J. Matrix Anal. Appl. 33 (2012), 130-148. (2012) Zbl1255.65082MR2902675DOI10.1137/110840248
- Rump, S. M., 10.1007/BF03186534, Japan J. Ind. Appl. Math. 26 (2009), 249-277. (2009) Zbl1185.65050MR2589475DOI10.1007/BF03186534
- Rump, S. M., INTLAB---Interval Laboratory, the Matlab toolbox for verified computations, Version 5.3, Institute for Reliable Computing, Hamburg (2006). (2006)
- Rump, S. M., 10.1137/S0036144598323216, SIAM Rev. 41 (1999), 102-112. (1999) Zbl0923.15003MR1669725DOI10.1137/S0036144598323216
- Rump, S. M., 10.1023/A:1022377410087, BIT 39 (1999), 143-151. (1999) Zbl0970.65039MR1682400DOI10.1023/A:1022377410087
- Rump, S. M., 10.1137/0612049, SIAM J. Matrix Anal. Appl. 12 (1991), 645-653. (1991) Zbl0738.65042MR1121698DOI10.1137/0612049
- Rump, S. M., Approximate Inverses of Almost Singular Matrices Still Contain Useful Information, Technical Report 90.1, Faculty for Information and Communications Sciences, TU Hamburg Harburg (1990). (1990)
- Smoktunowicz, A., Barlow, J., Langou, J., 10.1007/s00211-006-0042-1, Numer. Math. 105 (2006), 299-313. (2006) Zbl1108.65021MR2262760DOI10.1007/s00211-006-0042-1
- Smoktunowicz, A., Wróbel, I., 10.1007/s10543-011-0362-0, BIT 52 (2012), 503-524. (2012) Zbl1251.65053MR2931361DOI10.1007/s10543-011-0362-0
- Stewart, G. W., 10.1137/1019104, SIAM Rev. 19 (1977), 634-662. (1977) MR0461871DOI10.1137/1019104
- Wang, G., Wei, Y., Qiao, S., Generalized Inverses: Theory and Computations, Science Press, Beijing (2004). (2004) MR3793648
- Wedin, P. Å., Perturbation theory for pseudo-inverses, BIT, Nord. Tidskr. Inf.-behandl. 13 (1973), 217-232. (1973) Zbl0263.65047MR0336982
- Wei, Y., Generalized inverses of matrices, Chapter 27, Handbook of Linear Algebra L. Hogben Chapman & Hall/CRC Press, Boca Raton (2014), 27-1-27-15. (2014) MR3013937
- Wei, Y., Ding, J., 10.1016/S0893-9659(00)00200-7, Appl. Math. Lett. 14 (2001), 599-604. (2001) Zbl0982.47003MR1832670DOI10.1016/S0893-9659(00)00200-7
- Wei, Y., Wu, H., 10.1016/S0898-1221(00)00041-9, Comput. Math. Appl. 39 (2000), 13-18. (2000) Zbl0957.15003MR1742470DOI10.1016/S0898-1221(00)00041-9
- Wei, Y., Xie, P., Zhang, L., 10.1137/15M1030200, SIAM J. Matrix Anal. Appl. 37 (2016), 649-675. (2016) Zbl1339.65057MR3502609DOI10.1137/15M1030200
- Xu, W., Wei, Y., Qiao, S., 10.1007/s10543-006-0049-0, BIT 46 (2006), 203-225. (2006) Zbl1093.65045MR2214856DOI10.1007/s10543-006-0049-0
- Zhou, L., Lin, L., Wei, Y., Qiao, S., 10.1007/s11075-009-9269-0, Numer. Algorithms 51 (2009), 381-399. (2009) Zbl1171.65031MR2505849DOI10.1007/s11075-009-9269-0
- Zielke, G., 10.1007/BF02238196, Computing 36 (1986), 105-162. (1986) Zbl0566.65026MR0832934DOI10.1007/BF02238196
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.