Convergence of Rump's method for computing the Moore-Penrose inverse

Yunkun Chen; Xinghua Shi; Yi Min Wei

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 3, page 859-879
  • ISSN: 0011-4642

Abstract

top
We extend Rump's verified method (S. Oishi, K. Tanabe, T. Ogita, S. M. Rump (2007)) for computing the inverse of extremely ill-conditioned square matrices to computing the Moore-Penrose inverse of extremely ill-conditioned rectangular matrices with full column (row) rank. We establish the convergence of our numerical verified method for computing the Moore-Penrose inverse. We also discuss the rank-deficient case and test some ill-conditioned examples. We provide our Matlab codes for computing the Moore-Penrose inverse.

How to cite

top

Chen, Yunkun, Shi, Xinghua, and Wei, Yi Min. "Convergence of Rump's method for computing the Moore-Penrose inverse." Czechoslovak Mathematical Journal 66.3 (2016): 859-879. <http://eudml.org/doc/286842>.

@article{Chen2016,
abstract = {We extend Rump's verified method (S. Oishi, K. Tanabe, T. Ogita, S. M. Rump (2007)) for computing the inverse of extremely ill-conditioned square matrices to computing the Moore-Penrose inverse of extremely ill-conditioned rectangular matrices with full column (row) rank. We establish the convergence of our numerical verified method for computing the Moore-Penrose inverse. We also discuss the rank-deficient case and test some ill-conditioned examples. We provide our Matlab codes for computing the Moore-Penrose inverse.},
author = {Chen, Yunkun, Shi, Xinghua, Wei, Yi Min},
journal = {Czechoslovak Mathematical Journal},
keywords = {Moore-Penrose inverse; condition number; ill-conditioned matrix},
language = {eng},
number = {3},
pages = {859-879},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence of Rump's method for computing the Moore-Penrose inverse},
url = {http://eudml.org/doc/286842},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Chen, Yunkun
AU - Shi, Xinghua
AU - Wei, Yi Min
TI - Convergence of Rump's method for computing the Moore-Penrose inverse
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 859
EP - 879
AB - We extend Rump's verified method (S. Oishi, K. Tanabe, T. Ogita, S. M. Rump (2007)) for computing the inverse of extremely ill-conditioned square matrices to computing the Moore-Penrose inverse of extremely ill-conditioned rectangular matrices with full column (row) rank. We establish the convergence of our numerical verified method for computing the Moore-Penrose inverse. We also discuss the rank-deficient case and test some ill-conditioned examples. We provide our Matlab codes for computing the Moore-Penrose inverse.
LA - eng
KW - Moore-Penrose inverse; condition number; ill-conditioned matrix
UR - http://eudml.org/doc/286842
ER -

References

top
  1. Ben-Israel, A., Greville, T. N. E., Generalized Inverses. Theory and Applications, Springer, New York (2003). (2003) Zbl1026.15004MR1987382
  2. Björck, Å., Numerical Methods for Least Squares Problems, Society for Industrial and Applied Mathematics (SIAM) Philadelphia (1996). (1996) Zbl0847.65023MR1386889
  3. Campbell, S. L., Meyer, C. D., Generalized Inverses of Linear Transformations, Dover Publications, New York (1991). (1991) Zbl0732.15003MR1105324
  4. Castro-González, N., Ceballos, J., Dopico, F. M., Molera, J. M., 10.1137/12088642X, SIAM J. Matrix Anal. Appl. 34 (2013), 1112-1128. (2013) Zbl1296.65060MR3082494DOI10.1137/12088642X
  5. Chen, L., Krishnamurthy, E. V., Madeod, I., 10.1016/S0167-8191(06)80014-1, Parallel Comput. 20 (1994), 297-311. (1994) MR1267509DOI10.1016/S0167-8191(06)80014-1
  6. Courrieu, P., Fast computation of Moore-Penrose inverse matrices, Neural Information Processing 8 (2005), 25-29. (2005) 
  7. Cucker, F., Diao, H., Wei, Y., 10.1090/S0025-5718-06-01913-2, Math. Comput. 76 (2007), 947-963. (2007) Zbl1115.15004MR2291844DOI10.1090/S0025-5718-06-01913-2
  8. Cucker, F., Diao, H., Wei, Y., 10.1002/nla.464, Numer. Linear Algebra Appl. 13 (2006), 71-84. (2006) Zbl1198.65084MR2194973DOI10.1002/nla.464
  9. Demmel, J., Gu, M., Eisenstat, S., Slapničar, I., Veselić, K., Drmač, Z., Computing the singular value decomposition with high relative accuracy, Linear Algebra Appl. 299 (1999), 21-80. (1999) Zbl0952.65032MR1723709
  10. Demmel, J. W., Hida, Y., Li, X. S., Riedy, E. J., 10.1145/1462173.1462177, ACM Trans. Math. Software 35 (2009), Art. 28, 32 pages. (2009) MR2738180DOI10.1145/1462173.1462177
  11. Demmel, J., Higham, N. J., 10.1137/0614001, SIAM J. Matrix Anal. Appl. 14 (1993), 1-14. (1993) MR1199540DOI10.1137/0614001
  12. Diao, H., Wei, Y., 10.1002/nla.540, Numer. Linear Algebra Appl. 14 (2007), 603-610. (2007) Zbl1199.65128MR2353687DOI10.1002/nla.540
  13. Diao, H., Wei, Y., Qiao, S., 10.1016/j.cam.2016.05.023, J. Comput. Appl. Math. 308 (2016), 276-300. (2016) Zbl1346.65015MR3523006DOI10.1016/j.cam.2016.05.023
  14. Dopico, F. M., Molera, J. M., 10.1093/imanum/drr023, IMA J. Numer. Anal. 32 (2012), 1096-1116. (2012) Zbl1251.65040MR2954742DOI10.1093/imanum/drr023
  15. Fiedler, M., 10.1016/S0024-3795(02)00510-4, Linear Algebra Appl. 362 (2003), 137-143. (2003) Zbl1022.15004MR1955460DOI10.1016/S0024-3795(02)00510-4
  16. Fiedler, M., Markham, T. L., A characterization of the Moore-Penrose inverse, Linear Algebra Appl. 179 (1993), 129-133. (1993) Zbl0764.15003MR1200147
  17. Golub, G. H., Loan, C. F. Van, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences Johns Hopkins University Press, Baltimore (2013). (2013) MR3024913
  18. Gulliksson, M., Wedin, P. Å., Wei, Y., 10.1023/A:1022319830134, BIT 40 (2000), 513-523. (2000) MR1780405DOI10.1023/A:1022319830134
  19. Jones, J., Karampetakis, N. P., Pugh, A. C., 10.1006/jsco.1997.0168, J. Symb. Comput. 25 (1998), 99-124. (1998) Zbl0894.68088MR1600622DOI10.1006/jsco.1997.0168
  20. Katsikis, V. N., Pappas, D., Fast computing of the Moore-Penrose inverse matrix, Electron. J. Linear Algebra (electronic only) 17 (2008), 637-650. (2008) Zbl1176.65048MR2460879
  21. Li, Z.-C., Huang, H.-T., Wei, Y., Cheng, A. H.-D., Effective Condition Number for Numerical Partial Differential Equations, Alpha Science International, Oxford (2014). (2014) MR3495915
  22. Li, Z., Xu, Q., Wei, Y., 10.1002/nla.838, Numer. Linear Algebra Appl. 20 (2013), 18-26. (2013) Zbl1289.65091MR3007236DOI10.1002/nla.838
  23. Ogita, T., Rump, S. M., Oishi, S., 10.1137/030601818, SIAM J. Sci. Comput. 26 (2005), 1955-1988. (2005) Zbl1084.65041MR2196584DOI10.1137/030601818
  24. Ohta, T., Ogita, T., Rump, S. M., Oishi, S., Numerical verification method for arbitrarily ill-conditioned linear systems, Transactions of the Japan Society for Industrial and Applied Mathematics 15 (2005), 269-287. (2005) 
  25. Oishi, S., Rump, S. M., 10.1007/s002110100310, Numer. Math. 90 (2002), 755-773. (2002) Zbl0999.65015MR1888837DOI10.1007/s002110100310
  26. Oishi, S., Tanabe, K., Ogita, T., Rump, S. M., 10.1016/j.cam.2006.05.022, J. Comput. Appl. Math. 205 (2007), 533-544. (2007) Zbl1120.65040MR2324858DOI10.1016/j.cam.2006.05.022
  27. Rao, C. R., Mitra, S. K., Generalized Inverses of Matrices and Its Applications, Wiley Series in Probability and Mathematical Statistics Wiley & Sons, New York (1971). (1971) MR0338013
  28. Rump, S. M., 10.1137/110840248, SIAM J. Matrix Anal. Appl. 33 (2012), 130-148. (2012) Zbl1255.65082MR2902675DOI10.1137/110840248
  29. Rump, S. M., 10.1007/BF03186534, Japan J. Ind. Appl. Math. 26 (2009), 249-277. (2009) Zbl1185.65050MR2589475DOI10.1007/BF03186534
  30. Rump, S. M., INTLAB---Interval Laboratory, the Matlab toolbox for verified computations, Version 5.3, Institute for Reliable Computing, Hamburg (2006). (2006) 
  31. Rump, S. M., 10.1137/S0036144598323216, SIAM Rev. 41 (1999), 102-112. (1999) Zbl0923.15003MR1669725DOI10.1137/S0036144598323216
  32. Rump, S. M., 10.1023/A:1022377410087, BIT 39 (1999), 143-151. (1999) Zbl0970.65039MR1682400DOI10.1023/A:1022377410087
  33. Rump, S. M., 10.1137/0612049, SIAM J. Matrix Anal. Appl. 12 (1991), 645-653. (1991) Zbl0738.65042MR1121698DOI10.1137/0612049
  34. Rump, S. M., Approximate Inverses of Almost Singular Matrices Still Contain Useful Information, Technical Report 90.1, Faculty for Information and Communications Sciences, TU Hamburg Harburg (1990). (1990) 
  35. Smoktunowicz, A., Barlow, J., Langou, J., 10.1007/s00211-006-0042-1, Numer. Math. 105 (2006), 299-313. (2006) Zbl1108.65021MR2262760DOI10.1007/s00211-006-0042-1
  36. Smoktunowicz, A., Wróbel, I., 10.1007/s10543-011-0362-0, BIT 52 (2012), 503-524. (2012) Zbl1251.65053MR2931361DOI10.1007/s10543-011-0362-0
  37. Stewart, G. W., 10.1137/1019104, SIAM Rev. 19 (1977), 634-662. (1977) MR0461871DOI10.1137/1019104
  38. Wang, G., Wei, Y., Qiao, S., Generalized Inverses: Theory and Computations, Science Press, Beijing (2004). (2004) MR3793648
  39. Wedin, P. Å., Perturbation theory for pseudo-inverses, BIT, Nord. Tidskr. Inf.-behandl. 13 (1973), 217-232. (1973) Zbl0263.65047MR0336982
  40. Wei, Y., Generalized inverses of matrices, Chapter 27, Handbook of Linear Algebra L. Hogben Chapman & Hall/CRC Press, Boca Raton (2014), 27-1-27-15. (2014) MR3013937
  41. Wei, Y., Ding, J., 10.1016/S0893-9659(00)00200-7, Appl. Math. Lett. 14 (2001), 599-604. (2001) Zbl0982.47003MR1832670DOI10.1016/S0893-9659(00)00200-7
  42. Wei, Y., Wu, H., 10.1016/S0898-1221(00)00041-9, Comput. Math. Appl. 39 (2000), 13-18. (2000) Zbl0957.15003MR1742470DOI10.1016/S0898-1221(00)00041-9
  43. Wei, Y., Xie, P., Zhang, L., 10.1137/15M1030200, SIAM J. Matrix Anal. Appl. 37 (2016), 649-675. (2016) Zbl1339.65057MR3502609DOI10.1137/15M1030200
  44. Xu, W., Wei, Y., Qiao, S., 10.1007/s10543-006-0049-0, BIT 46 (2006), 203-225. (2006) Zbl1093.65045MR2214856DOI10.1007/s10543-006-0049-0
  45. Zhou, L., Lin, L., Wei, Y., Qiao, S., 10.1007/s11075-009-9269-0, Numer. Algorithms 51 (2009), 381-399. (2009) Zbl1171.65031MR2505849DOI10.1007/s11075-009-9269-0
  46. Zielke, G., 10.1007/BF02238196, Computing 36 (1986), 105-162. (1986) Zbl0566.65026MR0832934DOI10.1007/BF02238196

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.