Displaying similar documents to “ K -Bessel functions in two variables.”

Trace and determinant in Jordan-Banach algebras.

Bernard Aupetit, Abdelaziz Maouche (2002)

Publicacions Matemàtiques

Similarity:

Using an appropriate definition of the multiplicity of a spectral value, we introduce a new definition of the trace and determinant of elements with finite spectrum in Jordan-Banach algebras. We first extend a result obtained by J. Zemánek in the associative case, on the connectedness of projections which are close to each other spectrally (Theorem 2.3). Secondly we show that the rank of the Riesz projection associated to a finite-rank element a and a finite subset of its spectrum is...

The Umbral operator and the integration involving generalized Bessel-type functions

Kottakkaran Sooppy Nisar, Saiful Rahman Mondal, Praveen Agarwal, Mujahed Al-Dhaifallah (2015)

Open Mathematics

Similarity:

The main purpose of this paper is to introduce a class of new integrals involving generalized Bessel functions and generalized Struve functions by using operational method and umbral formalization of Ramanujan master theorem. Their connections with trigonometric functions with several distinct complex arguments are also presented.

Distinguishing Jordan polynomials by means of a single Jordan-algebra norm

A. Moreno Galindo (1997)

Studia Mathematica

Similarity:

For = ℝ or ℂ we exhibit a Jordan-algebra norm ⎮·⎮ on the simple associative algebra M ( ) with the property that Jordan polynomials over are precisely those associative polynomials over which act ⎮·⎮-continuously on M ( ) . This analytic determination of Jordan polynomials improves the one recently obtained in [5].

A 3G-Theorem for Jordan Domains in ℝ²

Lotfi Riahi (2004)

Colloquium Mathematicae

Similarity:

We prove a new 3G-Theorem for the Laplace Green function G on an arbitrary Jordan domain D in ℝ². This theorem extends the recent one proved on a Dini-smooth Jordan domain.

Jordan superderivations and Jordan triple superderivations of superalgebras

He Yuan, Liangyun Chen (2016)

Colloquium Mathematicae

Similarity:

We study Jordan (θ,θ)-superderivations and Jordan triple (θ,θ)-superderivations of superalgebras, using the theory of functional identities in superalgebras. As a consequence, we prove that if A = A₀ ⊕ A₁ is a prime superalgebra with deg(A₁) ≥ 9, then Jordan superderivations and Jordan triple superderivations of A are superderivations of A, and generalized Jordan superderivations and generalized Jordan triple superderivations of A are generalized superderivations of A.

The Jordan structure of CSL algebras

Fangyan Lu (2009)

Studia Mathematica

Similarity:

We show that every Jordan isomorphism between CSL algebras is the sum of an isomorphism and an anti-isomorphism. Also we show that each Jordan derivation of a CSL algebra is a derivation.

On annihilators in Jordan algebras.

Antonio Fernández López (1992)

Publicacions Matemàtiques

Similarity:

In this paper we prove that a nondegenerate Jordan algebra satisfying the descending chain condition on the principal inner ideals, also satisfies the ascending chain condition on the annihilators of the principal inner ideals. We also study annihilators in Jordan algebras without nilpotent elements and in JB-algebras.