Distinguishing Jordan polynomials by means of a single Jordan-algebra norm

A. Moreno Galindo

Studia Mathematica (1997)

  • Volume: 122, Issue: 1, page 67-73
  • ISSN: 0039-3223

Abstract

top
For = ℝ or ℂ we exhibit a Jordan-algebra norm ⎮·⎮ on the simple associative algebra M ( ) with the property that Jordan polynomials over are precisely those associative polynomials over which act ⎮·⎮-continuously on M ( ) . This analytic determination of Jordan polynomials improves the one recently obtained in [5].

How to cite

top

Moreno Galindo, A.. "Distinguishing Jordan polynomials by means of a single Jordan-algebra norm." Studia Mathematica 122.1 (1997): 67-73. <http://eudml.org/doc/216361>.

@article{MorenoGalindo1997,
abstract = {For = ℝ or ℂ we exhibit a Jordan-algebra norm ⎮·⎮ on the simple associative algebra $M_\{∞\}()$ with the property that Jordan polynomials over are precisely those associative polynomials over which act ⎮·⎮-continuously on $M_\{∞\}()$. This analytic determination of Jordan polynomials improves the one recently obtained in [5].},
author = {Moreno Galindo, A.},
journal = {Studia Mathematica},
keywords = {non-Jordan associative polynomials; associative algebras; Jordan-algebra norms; Zelmanov prime theorem; Jordan algebras},
language = {eng},
number = {1},
pages = {67-73},
title = {Distinguishing Jordan polynomials by means of a single Jordan-algebra norm},
url = {http://eudml.org/doc/216361},
volume = {122},
year = {1997},
}

TY - JOUR
AU - Moreno Galindo, A.
TI - Distinguishing Jordan polynomials by means of a single Jordan-algebra norm
JO - Studia Mathematica
PY - 1997
VL - 122
IS - 1
SP - 67
EP - 73
AB - For = ℝ or ℂ we exhibit a Jordan-algebra norm ⎮·⎮ on the simple associative algebra $M_{∞}()$ with the property that Jordan polynomials over are precisely those associative polynomials over which act ⎮·⎮-continuously on $M_{∞}()$. This analytic determination of Jordan polynomials improves the one recently obtained in [5].
LA - eng
KW - non-Jordan associative polynomials; associative algebras; Jordan-algebra norms; Zelmanov prime theorem; Jordan algebras
UR - http://eudml.org/doc/216361
ER -

References

top
  1. [1] R. Arens and M. Goldberg, Quadrative seminorms and Jordan structures on algebras, Linear Algebra Appl. 181 (1993), 269-278. Zbl0827.46047
  2. [2] R. Arens, M. Goldberg and W. A. J. Luxemburg, Multiplicativity factors for seminorms II, J. Math. Anal. Appl. 170 (1992), 401-413. Zbl0796.46034
  3. [3] M. Cabrera, A. Moreno and A. Rodríguez, On the behaviour of Jordan-algebra norms on associative algebras, Studia Math. 113 (1995), 81-100. Zbl0826.17038
  4. [4] M. Cabrera, A. Moreno and A. Rodríguez, Zel'manov's theorem for primitive Jordan-Banach algebras, J. London Math. Soc., to appear. Zbl0922.17019
  5. [5] M. Cabrera, A. Moreno, A. Rodríguez and E. Zel'manov, Jordan polynomials can be analytically recognized, Studia Math. 117 (1996), 137-147. Zbl0852.17033
  6. [6] M. Cabrera and A. Rodríguez, Zel'manov's theorem for normed simple Jordan algebras with a unit, Bull. London Math. Soc. 25 (1993), 59-63. 
  7. [7] M. Cabrera and A. Rodríguez, Nondegenerately ultraprime Jordan-Banach algebras: a zel'manovian treatment, Proc. London Math. Soc. 69 (1994), 576-604. Zbl0809.46044
  8. [8] A. Fernández, E. García and A. Rodríguez, A Zel'manov prime theorem for JB*-algebras, J. London Math. Soc. 46 (1992), 319-335. Zbl0723.17025
  9. [9] A. Moreno and A. Rodríguez, Algebra norms on tensor products of algebras and the norm extension problem, preprint, Universidad de Granada, 1995. 
  10. [10] A. Rodríguez, La continuidad del producto de Jordan implica la del ordinario en el caso completo semiprimo, in: Contribuciones en Probabilidad, Estadística Matemática, Enseñanza de la Matemática y Análisis, Secretariado de Publicaciones de la Universidad de Granada, Granada, 1979, 280-288. 
  11. [11] A. Rodríguez, Jordan axioms for C*-algebras, Manuscripta Math. 61 (1988), 297-314. 
  12. [12] A. Rodríguez, Jordan structures in Analysis, in: Jordan Algebras: Proc. Conf. Oberwolfach, August 9-15, 1992, W. Kaup, K. McCrimmon, and H. Petersson (eds.), Walter de Gruyter, Berlin, 1994, 97-186. Zbl0818.17036
  13. [13] A. Rodríguez, A. Slin'ko and E. Zel'manov, Extending the norm from Jordan-Banach algebras of hermitian elements to their associative envelopes, Comm. Algebra 22 (1994), 1435-1455. Zbl0806.17033
  14. [14] S. Shirali, On the Jordan structure of complex Banach *-algebras, Pacific J. Math. 27 (1968), 397-404. Zbl0182.17802
  15. [15] E. Zel'manov, On prime Jordan algebras II, Siberian Math. J. 24 (1983), 89-104. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.