Ahlfors theorems for differential forms.
Martio, O., Miklyukov, V.M., Vuorinen, M. (2010)
Abstract and Applied Analysis
Similarity:
Martio, O., Miklyukov, V.M., Vuorinen, M. (2010)
Abstract and Applied Analysis
Similarity:
Pierre Guerini, Alessandro Savo (2002-2003)
Séminaire de théorie spectrale et géométrie
Similarity:
Marius Mitrea, Victor Nistor (2007)
Czechoslovak Mathematical Journal
Similarity:
We study the method of layer potentials for manifolds with boundary and cylindrical ends. The fact that the boundary is non-compact prevents us from using the standard characterization of Fredholm or compact pseudo-differential operators between Sobolev spaces, as, for example, in the works of Fabes-Jodeit-Lewis and Kral-Wedland . We first study the layer potentials depending on a parameter on compact manifolds. This then yields the invertibility of the relevant boundary integral operators...
Martio, O., Miklyukov, V.M., Vuorinen, M. (2010)
Journal of Inequalities and Applications [electronic only]
Similarity:
Currie, Sonja, Love, Anne D. (2011)
Boundary Value Problems [electronic only]
Similarity:
Iraniparast, Nezam (1999)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Garcia, Luis, Leiva, Hugo (2000)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Currie, Sonja, Love, Anne D. (2010)
Advances in Difference Equations [electronic only]
Similarity: