The Hodge laplacian on manifolds with boundary

Pierre Guerini; Alessandro Savo

Séminaire de théorie spectrale et géométrie (2002-2003)

  • Volume: 21, page 125-146
  • ISSN: 1624-5458

How to cite

top

Guerini, Pierre, and Savo, Alessandro. "The Hodge laplacian on manifolds with boundary." Séminaire de théorie spectrale et géométrie 21 (2002-2003): 125-146. <http://eudml.org/doc/114471>.

@article{Guerini2002-2003,
author = {Guerini, Pierre, Savo, Alessandro},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Gallot-Meyer inequality; Chanillo-Treves estimate; absolute boundary conditions; relative boundary conditions; bounding first positive eigenvalue},
language = {eng},
pages = {125-146},
publisher = {Institut Fourier},
title = {The Hodge laplacian on manifolds with boundary},
url = {http://eudml.org/doc/114471},
volume = {21},
year = {2002-2003},
}

TY - JOUR
AU - Guerini, Pierre
AU - Savo, Alessandro
TI - The Hodge laplacian on manifolds with boundary
JO - Séminaire de théorie spectrale et géométrie
PY - 2002-2003
PB - Institut Fourier
VL - 21
SP - 125
EP - 146
LA - eng
KW - Gallot-Meyer inequality; Chanillo-Treves estimate; absolute boundary conditions; relative boundary conditions; bounding first positive eigenvalue
UR - http://eudml.org/doc/114471
ER -

References

top
  1. [A] C. ANNÉ, A note on the generalized Dumbbell problem. Proc.Am. Math. Soc. 123, 8, 2595-2599 ( 1995). Zbl0829.58044MR1257096
  2. [Ch] I. CHAVEL, Eigenvalues in Riemannian geometry. Academic Press, 1984. Zbl0551.53001MR768584
  3. [C-C] B. COLBOIS and G. COURTOIS, A note on the first eigenvalue of the Laplacian acting on p-forms ManuscriptaMath. 68 ( 1990) 143-160. Zbl0709.53031MR1063223
  4. [C-T] S. CHANILLO and F. TREVES, On the lowest eigenvalue of the Hodge Laplacian. J. Diff. Geometry, 45, 273-287 ( 1997) Zbl0874.58087MR1449973
  5. [CV] Y. COLIN DE VERDIÈRE, Construction de laplaciens dont une partie finie du spectre est donnée.Ann. Scient. Ec. Norm. Sup., 4e série, t. 20, ( 1987), 599 615. Zbl0636.58036MR932800
  6. [D] J. DODZIUK, Eigenvalues of the Laplacian on forms. Proc. Amer. Math. Society, 85,3 ( 1982). Zbl0502.58038MR656119
  7. [F] L. FRIEDLANDER, Some inequalities between Dirichlet and Neumann eigenvalues. J. Arch. Ration. Mech. Anal. 116, No.2 ( 1991) 153 160. Zbl0789.35124MR1143438
  8. [G M1] S. GALLOT and D. MEYER, Operateur de courbure et Laplacien des formes differentielles d'une variété riemannienne J. Math. PuresAppl. 54 ( 1975) 259 284. Zbl0316.53036MR454884
  9. [G-M2] S. GALLOT and D. MEYER, D'un résultat hilbertien à un principe de comparaison entre spectres. Applications. Ann. Scient. Ec. Norm. Sup., 4 Serie, t. 21 ( 1988) 561-591. Zbl0722.53037MR982334
  10. [G-P] G. GENTILE and V. PAGLIARA, Riemannian metrics with large first eigenvalue on forms of degree p. Proc. Amer. Math. Soc. 123 ( 1995) no 12, 3855 3858. Zbl0848.53022MR1277111
  11. [G1] P. GUERINI, Spectre du Lapladen de Hodge - de Rham: Estimées sur les Variétés Convexes. To appear in the Bulletin of the London Mathematical Society. Zbl1066.58016MR2011982
  12. [G2] R. GUERINI, Prescription du Spectre du Laplacien de Hodge - de Rham. To appear in the Annales Scientifiques de l'École Normale Supérieure. 
  13. [G-S] P. GUERINI and A. SAVO, Eigenvalues and gap estimâtes for the Laplacian acting on p-forms. To appear in the Transactions of the American Mathematical Society. Zbl1034.58026MR2020035
  14. [L-Y] P. Li and S-T. YAU, Estimates of eigenvalues of a compact Riemannian manifold. Proc. Symp. Pure Math. t. 36 ( 1980) 205-239. Zbl0441.58014MR573435
  15. [McG] J.K. MCGOWAN, The p-spectrum of the Laplacian on compact hyperboïic three manifolds. Math. Ann. 297, 4, 725 745 ( 1993). Zbl0801.53034MR1245416
  16. [McK] H.P. MCKEAN, An upper bound for the spectrum of Δ on a manifold of negative curvature. J. Diff. Geom. 4( 1970)359-366. Zbl0197.18003MR266100
  17. [P-P-W] L. PAYNE, G. PÓLYA, H. WEINBERGER, On the Ratio of Consecutive Eigenvalues. J. of Math. and Phys., vol 35, ( 1956), 289-298. Zbl0073.08203MR84696
  18. [P-W] L. PAYNE and H. WEINBERGER, Lower bounds for vibration frequencies of elastically supportes membranes and plates. J. Soc. Ind. Appl. Math. 5 ( 1957) 171-182. Zbl0083.19406MR92431
  19. [R] R.C. REILLY, On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space. Comment. Math. Helv. 52 n. 4 ( 1977) 525-533. Zbl0382.53038MR482597
  20. [S] A. SAVO, A mean-value lemma and applications. Bull. Soc. Math. France 129 n. 4 ( 2001) 505-542. Zbl1024.58017MR1894148
  21. [Sc] G. SCHWARZ, Hodge decomposition -A method for solving boundary value problems. Springer. Zbl0828.58002MR1367287
  22. [T] J. TAKAHASHI, On the gap between the first eigenvalues of the Laplacian on functions and 1-forms. Ann. Glob. Anal. Geom. to appear. Zbl1021.58025MR1815136
  23. [W] H.F. WEINBERGER, An isoperimetric inequality for the n-dimensional free membrane problem. J. Rational Mech. Anal. 5 ( 1956) 633-636. Zbl0071.09902MR79286

NotesEmbed ?

top

You must be logged in to post comments.