From Newton's equation to fractional diffusion and wave equations.
Vázquez, Luis (2011)
Advances in Difference Equations [electronic only]
Similarity:
Vázquez, Luis (2011)
Advances in Difference Equations [electronic only]
Similarity:
Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)
Applications of Mathematics
Similarity:
We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...
Li-Li Liu, Jun-Sheng Duan (2015)
Open Mathematics
Similarity:
In this paper, we investigate the solution of the fractional vibration equation, where the damping term is characterized by means of the Caputo fractional derivative with the order α satisfying 0 < α < 1 or 1 < α < 2. Detailed analysis for the fundamental solution y(t) is carried out through the Laplace transform and its complex inversion integral formula. We conclude that y(t) is ultimately positive, and ultimately decreases monotonically and approaches zero for the case...
Samuel, M., Thomas, Anitha (2010)
Fractional Calculus and Applied Analysis
Similarity:
MSC 2010: 26A33, 33E12, 33C60, 35R11 In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.
Gutiérrez, Ricardo Enrique, Rosário, João Maurício, Machado, José Tenreiro (2010)
Mathematical Problems in Engineering
Similarity:
Ayoub, N., Alzoubi, F., Khateeb, H., Al-Qadi, M., Hasan (Qaseer), M., Albiss, B., Rousan, A. (2006)
Fractional Calculus and Applied Analysis
Similarity:
Mathematics Subject Classification: 26A33, 30B10, 33B15, 44A10, 47N70, 94C05 We suggest a fractional differential equation that combines the simple harmonic oscillations of an LC circuit with the discharging of an RC circuit. A series solution is obtained for the suggested fractional differential equation. When the fractional order α = 0, we get the solution for the RC circuit, and when α = 1, we get the solution for the LC circuit. For arbitrary α we get a general solution...
Yuji Liu, Pinghua Yang (2014)
Applicationes Mathematicae
Similarity:
The purpose of this paper is to study global existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. By constructing a special Banach space and employing fixed-point theorems, some sufficient conditions are obtained for the global existence and uniqueness of solutions of this kind of equations involving Caputo fractional derivatives and multiple base points. We apply the results to solve the forced logistic model with multi-term...
Rajneesh Kumar, Poonam Sharma (2016)
Curved and Layered Structures
Similarity:
This paper deals with the study of transverse vibrations in piezothermoelastic beam resonators with fractional order derivative. The fractional order theory of thermoelasticity developed by Sherief et al. [1] has been used to study the problem. The expressions for frequency shift and damping factor are derived for a thermo micro-electromechanical (MEM) and thermo nano-electromechanical (NEM) beam resonators clamped on one side and free on another. The effect of fractional order derivative...
Huang, F. (2009)
Journal of Applied Mathematics
Similarity:
Masayoshi Hata (2005)
Acta Arithmetica
Similarity:
B. Martić (1964)
Matematički Vesnik
Similarity: