The Kolmogorov equation in the stochastic fragmentation theory and branching processes with infinite collection of particle types.
Brodskii, R.Ye., Virchenko, Yu.P. (2006)
Abstract and Applied Analysis
Similarity:
Brodskii, R.Ye., Virchenko, Yu.P. (2006)
Abstract and Applied Analysis
Similarity:
Quansheng Liu (1993)
Publications mathématiques et informatique de Rennes
Similarity:
J. Holzheimer (1984)
Applicationes Mathematicae
Similarity:
V. I. Afanasyev, Ch. Böinghoff, G. Kersting, V. A. Vatutin (2014)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
For a branching process in random environment it is assumed that the offspring distribution of the individuals varies in a random fashion, independently from one generation to the other. For the subcritical regime a kind of phase transition appears. In this paper we study the intermediately subcritical case, which constitutes the borderline within this phase transition. We study the asymptotic behavior of the survival probability. Next the size of the population and the shape of the...
Kosygina, Elena, Zerner, Martin P.W. (2008)
Electronic Journal of Probability [electronic only]
Similarity:
Greven, A., Klenke, A., Wakolbinger, A. (1999)
Electronic Journal of Probability [electronic only]
Similarity:
Lozanov-Crvenković, Z., Pilipović, S. (1989)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Cohen, Jason, Resnick, Sidney, Samorodnitsky, Gennady (1998)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Oldřich Kropáč (1981)
Kybernetika
Similarity:
D. Szynal (1976)
Applicationes Mathematicae
Similarity:
González, Miguel, del Puerto, Inés Maria (2010)
Boletín de Estadística e Investigación Operativa
Similarity:
W. Szczotka, P. Żebrowski (2012)
Applicationes Mathematicae
Similarity:
Continuous time random walks with jump sizes equal to the corresponding waiting times for jumps are considered. Sufficient conditions for the weak convergence of such processes are established and the limiting processes are identified. Furthermore one-dimensional distributions of the limiting processes are given under an additional assumption.
Yakymiv, A.L. (2002)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity: