Implementation of the gmr algorithm for large symmetric eigenproblems
J. Kuczyński (1988)
Applicationes Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
J. Kuczyński (1988)
Applicationes Mathematicae
Similarity:
F. Pankowski (1974)
Applicationes Mathematicae
Similarity:
A. Adrabiński, J. Grabowski (1977)
Applicationes Mathematicae
Similarity:
J. Kucharczyk (1972)
Applicationes Mathematicae
Similarity:
S. Lewanowicz (1974)
Applicationes Mathematicae
Similarity:
Krystyna Jerzykiewicz (1970)
Applicationes Mathematicae
Similarity:
Salkuyeh, Davod Khojasteh, Roohani, Hadi (2009)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Anna Bartkowiak (1975)
Applicationes Mathematicae
Similarity:
J. Kucharczyk (1973)
Applicationes Mathematicae
Similarity:
A. Adrabiński (1976)
Applicationes Mathematicae
Similarity:
Z. Kasperski (1978)
Applicationes Mathematicae
Similarity:
Z. Cylkowski, J. Kucharczyk (1970)
Applicationes Mathematicae
Similarity:
Anna Bartkowiak (1975)
Applicationes Mathematicae
Similarity:
D. Benterki, B. Merikhi (2010)
RAIRO - Operations Research
Similarity:
In this note, we present a slight modification of an algorithm for the strict feasibility problem. This modification reduces the number of iterations.
Stefan Feuerriegel, H. Martin Bücker (2015)
International Journal of Applied Mathematics and Computer Science
Similarity:
The Lanczos algorithm is among the most frequently used iterative techniques for computing a few dominant eigenvalues of a large sparse non-symmetric matrix. At the same time, it serves as a building block within biconjugate gradient (BiCG) and quasi-minimal residual (QMR) methods for solving large sparse non-symmetric systems of linear equations. It is well known that, when implemented on distributed-memory computers with a huge number of processes, the synchronization time spent on...
E. Neuman (1974)
Applicationes Mathematicae
Similarity: