Displaying similar documents to “Finite difference schemes with monotone operators.”

Second order difference inclusions of monotone type

G. Apreutesei, N. Apreutesei (2012)

Mathematica Bohemica

Similarity:

The existence of anti-periodic solutions is studied for a second order difference inclusion associated with a maximal monotone operator in Hilbert spaces. It is the discrete analogue of a well-studied class of differential equations.

On maximal monotone operators with relatively compact range

Dariusz Zagrodny (2010)

Czechoslovak Mathematical Journal

Similarity:

It is shown that every maximal monotone operator on a real Banach space with relatively compact range is of type NI. Moreover, if the space has a separable dual space then every maximally monotone operator T can be approximated by a sequence of maximal monotone operators of type NI, which converge to T in a reasonable sense (in the sense of Kuratowski-Painleve convergence).

Monotone operators. A survey directed to applications to differential equations

Jan Franců (1990)

Aplikace matematiky

Similarity:

The paper deals with the existence of solutions of the form A u = b with operators monotone in a broader sense, including pseudomonotone operators and operators satisfying conditions S and M . The first part of the paper which has a methodical character is concluded by the proof of an existence theorem for the equation on a reflexive separable Banach space with a bounded demicontinuous coercive operator satisfying condition ( M ) 0 . The second part which has a character of a survey compares various...

An existence result for nonlinear evolution equations of second order

Dimitrios A. Kandilakis (1996)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper we consider a second order differential equation involving the difference of two monotone operators. Using an auxiliary equation, a priori bounds and a compactness argument we show that the differential equation has a local solution. An example is also presented in detail.